Weekend Sale - 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dm70dm

ANS-C01 Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Questions 4

A company has deployed its AWS environment in a single AWS Region. The environment consists of a few hundred application VPCs, a shared services VPC, and a VPN connection to the company’s on-premises environment. A network engineer needs to implement a transit gateway with the following requirements:

• Application VPCs must be isolated from each other.

• Bidirectional communication must be allowed between the application VPCs and the on-premises network.

• Bidirectional communication must be allowed between the application VPCs and the shared services VPC.

The network engineer creates the transit gateway with options disabled for default route table association and default route table propagation. The network engineer also creates the VPN attachment for the on-premises network and creates the VPC attachments for the application VPCs and the shared services VPC.

The network engineer must meet all the requirements for the transit gateway by designing a solution that needs the least number of transit gateway route tables.

Which combination of actions should the network engineer perform to accomplish this goal? (Choose two.)

Options:

A.

Configure a separate transit gateway route table for on premises. Associate the VPN attachment with this transit gateway route table. Propagate all application VPC attachments to this transit gateway route table.

B.

Configure a separate transit gateway route table for each application VPC. Associate each application VPC attachment with its respective transit gateway route table. Propagate the shared services VPC attachment and the VPN attachment to this transit gateway route table.

C.

Configure a separate transit gateway route table for all application VPCs. Associate all application VPCs with this transit gateway route table. Propagate the shared services VPC attachment and the VPN attachment to this transit gateway route table.

D.

Configure a separate transit gateway route table for the shared services VPC. Associate the shared services VPC attachment with this transit gateway route table. Propagate all application VPC attachments to this transit gateway route table.

E.

Configure a separate transit gateway route table for on premises and the shared services VPC. Associate the VPN attachment and the shared services VPC attachment with this transit gateway route table. Propagate all application VPC attachments to this transit gateway route table.

Buy Now
Questions 5

A company's AWS architecture consists of several VPCs. The VPCs include a shared services VPC and several application VPCs. The company has established network connectivity from all VPCs to the on-premises DNS servers.

Applications that are deployed in the application VPCs must be able to resolve DNS for internally hosted domains on premises. The applications also must be able to resolve local VPC domain names and domains that are hosted in Amazon Route 53 private hosted zones.

What should a network engineer do to meet these requirements?

Options:

A.

Create a new Route 53 Resolver inbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC. Update each application VPC's DHCP configuration to point DNS resolution to the new Resolver endpoint.

B.

Create a new Route 53 Resolver outbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC.

C.

Create a new Route 53 Resolver outbound endpoint in the shared services VPCreate forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPUpdate each application VPC's DHCP configuration to point DNS resolution to the new Resolver endpoint.

D.

Create a new Route 53 Resolver inbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC.

Buy Now
Questions 6

A company has a VPC that hosts Amazon EC2 instances in a private subnet. The EC2 Instances use a NAT gateway and an internet gateway for internet connectivity to retrieve data from specific internet websites. The company wants to use AWS Network Firewall to filter outbound traffic.

What should a network engineer do to meet these requirements?

Options:

A.

1. Create a firewall in the NAT gateway subnet.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

3. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the firewall endpoint.

4. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

B.

1. Create a firewall in a new subnet.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of0.0.0.0/0 to the firewall endpoint.

3. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

4. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

C.

1. Create a firewall in the subnet of the EC2 instances.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the firewall endpoint.

3. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

4. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

D.

1. Create a firewall in a new subnet.

2. Configure the EC2 instance subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the NAT gateway.

3. Configure the NAT gateway subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the firewall endpoint.

4. Configure the firewall subnet route tables to direct traffic with a destination of 0.0.0.0/0 to the internet gateway.

Buy Now
Questions 7

A network engineer is designing a hybrid architecture that uses a 1 Gbps AWS Direct Connect connection between the company's data center and two AWS Regions: us-east-1 and eu-west-1. The VPCs in us-east-1 are connected by a transit gateway and need to access several on-premises databases. According to company policy, only one VPC in eu-west-1 can be connected to one on-premises server. The on-premises network segments the traffic between the databases and theserver.

How should the network engineer set up the Direct Connect connection to meet these requirements?

Options:

A.

Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct. Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

B.

Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

C.

Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

D.

Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

Buy Now
Questions 8

A company runs an application on Amazon EC2 instances. A network engineer implements a NAT gateway in the application's VPC to replace self-managed NAT instances. After the network engineer shifts traffic from the self-managed NAT instances to the NAT gateway, users begin to report issues.

During troubleshooting, the network engineer discovers that the connection to the application is closing after approximately 6 minutes of inactivity.

What should the network engineer do to resolve this issue?

Options:

A.

Check for increases in the Amazon CloudWatch IdleTimeoutCount metric for the NAT gateway. Configure TCP keepalive on the application EC2 instances.

B.

Check for increases in the Amazon CloudWatch ErrorPortAIlocation metric for the NAT gateway. Configure an HTTP timeout value on the application EC2 instances.

C.

Check for increases in the Amazon CloudWatch PacketsDropCount metric for the NAT gateway. Configure an HTTPS timeout value on the application EC2 instances.

D.

Check for decreases in the Amazon CloudWatch ActiveConnectionCount metric for the NAT gateway. Configure UDP keepalive on the application EC2 instances.

Buy Now
Questions 9

A company needs to capture and log traffic for Nitro-based Amazon EC2 instances to comply with regulations. The company's network team has prepared a solution that enables VPC traffic mirroring and sends traffic to a second set of EC2 instances in an Auto Scaling group.

The network team has added a Network Load Balancer (NLB) in front of the EC2 instances the traffic will be sent to. However, the solution does not send any mirrored traffic to the EC2 instances that are behind the NLB.

How should the network team configure traffic mirroring to use the NLB endpoint?

Options:

A.

Select the NLB as a source for traffic mirroring. Use a UDP listener.

B.

Select the NLB as a target for traffic mirroring. Use a TCP listener and a UDP listener.

C.

Select the NLB as a target for traffic mirroring. Use a TCP listener.

D.

Select the NLB as a target for traffic mirroring. Use a UDP listener.

Buy Now
Questions 10

A company has two business units (BUs). The company operates in the us-east-1 Region and the us-west-1 Region. The company plans to extend to more Regions in the future. Each BU has

a VPC in each Region. Each Region has a transit gateway with the BU VPCs attached. The transit gateways in both Regions are peered.

The company will create several more BUs in the future and will need to isolate some of the BUs from the other BUs. The company wants to migrate to an architecture to incorporate more

Regions and BUs.

Which solution will meet these requirements with the MOST operational efficiency?

Options:

A.

Create a new transit gateway for each new BU in each Region. Peer the new transit gateways with the existing transit gateways. Update the route tables to control traffic between BUs.

B.

Create an AWS Cloud WAN core network with an edge location in both Regions. Configure a segment for each BU with VPC attachments to the new BU VPCs. Use segment actions to control traffic between segments.

C.

Create an AWS Cloud WAN core network with an edge location in both Regions. Configure a segment for each BU with VPC attachments to the new BU VPCs. Configure the segments to isolate attachments to control traffic between segments.

D.

Attach new VPCs to the existing transit gateways. Update route tables to control traffic between BUs.

Buy Now
Questions 11

A company has several production applications across different accounts in the AWS Cloud. The company operates from the us-east-1 Region only. Only certain partner companies can access the applications. The applications are running on Amazon EC2 instances that are in an Auto Scaling group behind an Application Load Balancer (ALB). The EC2 instances are in private subnets and allow traffic only from the ALB. The ALB is in a public subnet and allows inbound traffic only from partner network IP address ranges over port 80.

When the company adds a new partner, the company must allow the IP address range of the partner network in the security group that is associated with the ALB in each account. A network engineer must implement a solution to centrally manage the partner network IP address ranges.

Which solution will meet these requirements in the MOST operationally efficient manner?

Options:

A.

Create an Amazon DynamoDB table to maintain all IP address ranges and security groups that need to be updated. Update the DynamoDB table with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the DynamoDB table to update the security groups. Deploy this solution in all accounts.

B.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Use Amazon EventBridge (Amazon CloudWatch Events) rules to invoke an AWS Lambda function to update security groups whenever a new IP address range is added to the prefix list. Deploy this solution in all accounts.

C.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Share the prefix list across different accounts by using AWS Resource Access Manager (AWS RAM). Update security groups to use the prefix list instead of the partner IP address range. Update the prefix list with the new IP address range when the company adds a new partner.

D.

Create an Amazon S3 bucket to maintain all IP address ranges and security groups that need to be updated. Update the S3 bucket with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the S3 bucket to update the security groups. Deploy this solution in all accounts.

Buy Now
Questions 12

A company has an AWS Site-to-Site VPN connection between its existing VPC and on-premises network. The default DHCP options set is associated with the VPC. The company has an application that is running on an Amazon Linux 2 Amazon EC2 instance in the VPC. The application must retrieve an Amazon RDS database secret that is stored in AWS Secrets Manager through a private VPC endpoint. An on-premises application provides internal RESTful API service that can be reached by URL (https://api.example.internal). Two on-premises Windows DNS servers provide internal DNS resolution.

The application on the EC2 instance needs to call the internal API service that is deployed in the on-premises environment. When the application on the EC2 instance attempts to call the internal API service by referring to the hostname that is assigned to the service, the call fails. When a network engineer tests the API service call from the same EC2 instance by using the API service's IP address, the call is successful.

What should the network engineer do to resolve this issue and prevent the same problem from affecting other resources in the VPC?

Options:

A.

Create a new DHCP options set that specifies the on-premises Windows DNS servers. Associate the new DHCP options set with the existing VPC. Reboot the Amazon Linux 2 EC2 instance.

B.

Create an Amazon Route 53 Resolver rule. Associate the rule with the VPC. Configure the rule to forward DNS queries to the on-premises Windows DNS servers if the domain name matches example.internal.

C.

Modify the local host file in the Amazon Linux 2 EC2 instance in the VPMap the service domain name (api.example.internal) to the IP address of the internal API service.

D.

Modify the local /etc/resolv.conf file in the Amazon Linux 2 EC2 instance in the VPC. Change the IP addresses of the name servers in the file to the IP addresses of the company's on-premisesWindows DNS servers.

Buy Now
Questions 13

A company has a data center in the us-west-1 Region with a 10 Gbps AWS Direct Connect dedicated connection to a Direct Connect gateway. There are two private VIFs from the same data center location in us-west-1 that are attached to the same Direct Connect gateway.

VIF 1 advertises 172.16.0.0/16 with an AS PATH attribute value of 65000. VIF 2 advertises 172.16.1.0/24 with an AS PATH attribute value of 65000 65000 65000.

How will AWS route traffic to the data center for traffic that has a destination address within the 172.16.1.0/24 network range?

Options:

A.

AWS will route all traffic by using VIF 1.

B.

AWS will route all traffic by using VIF 2.

C.

AWS will use both VIFs for routing by using a round-robin policy.

D.

AWS will use flow control to balance the traffic between the two VIFs.

Buy Now
Questions 14

A network engineer needs to provide a list of IP addresses that are sending traffic to an Amazon EC2 instance. VPC flow logs are enabled. The EC2 instance has a single network interface and two assigned IP addresses. However, the flow logs are logging traffic only for the primary IP address. The network engineer needs to determine whether any traffic is being sent to the second IP address of the EC2 instance.

What should the network engineer do to locate the traffic flow for the second IP address?

Options:

A.

Create a new flow log that includes the pkt-dstaddr field to capture the original destination IP address of the traffic.

B.

Create a new flow log that includes the dstaddr field to capture the original destination IP address of the traffic.

C.

Create a new flow log that includes the pkt-srcaddr field to capture the originaldestination IP address of the traffic.

D.

Create a new flow log that includes the srcaddr field to capture the original destination IP address of the traffic.

Buy Now
Questions 15

A company has deployed an application in a VPC that uses a NAT gateway for outbound traffic to the internet. A network engineer notices a large quantity of suspicious network traffic that is traveling from the VPC over the internet to IP addresses that are included on a deny list. The network engineer must implement a solution to determine which AWS resources are generating the suspicious traffic. The solution must minimize cost and administrative overhead.

Which solution will meet these requirements?

Options:

A.

Launch an Amazon EC2 instance in the VPC. Use Traffic Mirroring by specifying the NAT gateway as the source and the EC2 instance as the destination. Analyze the captured traffic by using open-source tools to identify the AWS resources that are generating the suspicious traffic.

B.

Use VPC flow logs. Launch a security information and event management (SIEM) solution in the VPC. Configure the SIEM solution to ingest the VPC flow logs. Run queries on the SIEM solution to identify the AWS resources that are generating the suspicious traffic.

C.

Use VPC flow logs. Publish the flow logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query the flow logs to identify the AWS resources that are generating the suspicious traffic.

D.

Configure the VPC to stream the network traffic directly to an Amazon Kinesis data stream. Send the data from the Kinesis data stream to an Amazon Kinesis Data Firehose delivery stream to store the data in Amazon S3. Use Amazon Athena to query the data to identify the AWS resources that are generating the suspicious traffic.

Buy Now
Questions 16

A data analytics company has a 100-node high performance computing (HPC) cluster. The HPC cluster is for parallel data processing and is hosted in a VPC in the AWS Cloud. As part of the data processing workflow, the HPC cluster needs to perform several DNS queries to resolve and connect to Amazon RDS databases, Amazon S3 buckets, and on-premises data stores that are accessible through AWS Direct Connect. The HPC cluster can increase in size by five to seven times during the company’s peak event at the end of the year.

The company is using two Amazon EC2 instances as primary DNS servers for the VPC. The EC2 instances are configured to forward queries to the default VPC resolver for Amazon Route 53 hosted domains and to the on-premises DNS servers for other on-premises hosted domain names. The company notices job failures and finds that DNS queries from the HPC cluster nodes failed when the nodes tried to resolve RDS and S3 bucket endpoints.

Which architectural change should a network engineer implement to provide the DNS service in the MOST scalable way?

Options:

A.

Scale out the DNS service by adding two additional EC2 instances in the VPC. Reconfigure half of the HPC cluster nodes to use these new DNS servers. Plan to scale out by adding additional EC2 instance-based DNS servers in the future as the HPC cluster size grows.

B.

Scale up the existing EC2 instances that the company is using as DNS servers. Change the instance size to the largest possible instance size to accommodate the current DNS load and the anticipated load in the future.

C.

Create Route 53 Resolver outbound endpoints. Create Route 53 Resolver rules to forward queries to on-premises DNS servers for on premises hosted domain names. Reconfigure the HPC cluster nodes to use the default VPC resolver instead of the EC2 instance-based DNS servers. Terminate the EC2 instances.

D.

Create Route 53 Resolver inbound endpoints. Create rules on the on-premises DNS servers to forward queries to the default VPC resolver. Reconfigure the HPC cluster nodes to forward all DNS queries to the on-premises DNS servers. Terminate the EC2 instances.

Buy Now
Questions 17

A network engineer needs to deploy an AWS Network Firewall firewall into an existing AWS environment. The environment consists of the following:

A transit gateway with all VPCs attached to it

Several hundred application VPCs

A centralized egress internet VPC with a NAT gateway and an internet gateway

A centralized ingress internet VPC that hosts public Application Load Balancers

On-premises connectivity through an AWS Direct Connect gateway attachment

The application VPCs have workloads deployed across multiple Availability Zones in private subnets with the VPC route table s default route (0.0.0.0/0) pointing to the transit gateway. The Network Firewall firewall needs to inspect east-west (VPC-to-VPC) traffic and north-south (internet-bound and on-premises network) traffic by using Suricata compatible rules.

The network engineer must deploy the firewall by using a solution that requires the least possible architectural changes to the existing production environment.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Deploy Network Firewall in all Availability Zones in each application VPC.

B.

Deploy Network Firewall in all Availability Zones in a centralized inspection VPC.

C.

Update the HOME_NET rule group variable to include all CIDR ranges of the VPCs and on-premises networks.

D.

Update the EXTERNAL_NET rule group variable to include all CIDR ranges of the VPCs and on-premises networks.

E.

Configure a single transit gateway route table. Associate all application VPCs and the centralized inspection VPC with this route table.

F.

Configure two transit gateway route tables. Associate all application VPCs with one transit gateway route table. Associate the centralized inspection VPC with the other transit gateway route table.

Buy Now
Questions 18

A company has deployed Amazon EC2 instances in private subnets in a VPC. The EC2 instances must initiate any requests that leave the VPC, including requests to the company's on-premises data center over an AWS Direct Connect connection. No resources outside the VPC can be allowed toopen communications directly to the EC2 instances.

The on-premises data center's customer gateway is configured with a stateful firewall device that filters for incoming and outgoing requests to and from multiple VPCs. In addition, the company wants to use a single IP match rule to allow all the communications from the EC2 instances to its data center from a single IP address.

Which solution will meet these requirements with the LEAST amount of operational overhead?

Options:

A.

Create a VPN connection over the Direct Connect connection by using the on-premises firewall. Use the firewall to block all traffic from on premises to AWS. Allow a stateful connection from the EC2 instances to initiate the requests.

B.

Configure the on-premises firewall to filter all requests from the on-premises network to the EC2 instances. Allow a stateful connection if the EC2 instances in the VPC initiate the traffic.

C.

Deploy a NAT gateway into a private subnet in the VPC where the EC2 instances are deployed. Specify the NAT gateway type as private. Configure the on-premises firewall to allow connections from the IP address that is assigned to the NAT gateway.

D.

Deploy a NAT instance into a private subnet in the VPC where the EC2 instances are deployed. Configure the on-premises firewall to allow connections from the IP address that is assigned to the NAT instance.

Buy Now
Questions 19

A company is planning to host external websites on AWS. The websites will include multiple tiers such as web servers, application logic services, and databases. The company wants to use AWS Network Firewall. AWS WAR and VPC security groups for network security.

The company must ensure that the Network Firewall firewalls are deployed appropriately within relevant VPCs. The company needs the ability to centrally manage policies that are deployed to Network Firewall and AWS WAF rules. The company also needs to allow application teams to manage their own security groups while ensuring that the security groups do not allow overly permissive access.

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Define Network Firewall firewalls. AWS WAFv2 web ACLs. Network Firewall policies, and VPC security groups in code Use AWS CloudFormation to deploy the objects and Initial policies and rule groups. Use CloudFormation to update the AWS WAFv2 web ACLs. Network Firewall policies, and VPC security groups. Use Amazon GuardDuty to monitor for overly permissive rules.

B.

Define Network Firewall firewalls. AWS WAFv2 web ACLs. Network Firewall policies, and VPC security groups in code. Use the AWS Management Console or the AWS CLI to manage the AWS WAFv2 web ACLs. Network Firewall policies, and VPC security groups. Use Amazon GuardDuty to invoke an AWS Lambda function to evaluate the configured rules and remove any overly permissive rules.

C.

Deploy AWS WAFv2 IP sets and AWS WAFv2 web ACLs with AWS CloudFormation. Use AWS Firewall Manager to deploy Network Firewall firewalls and VPC security groups where required and to manage the AWS WAFv2 web ACLs, Network Firewall policies, and VPC security groups.

D.

Define Network Firewall firewalls. AWS WAFv2 web ACLs. Network Firewall policies, and VPC security groups in code. Use AWS CloudFormation to deploy the objects and initial policies and rule groups. Use AWS Firewall Manager to manage the AWS WAFv2 web ACLs. Network Firewall policies, and VPC security groups. Use Amazon GuardDuty to monitor for overly permissive rules.

Buy Now
Questions 20

A company has an order processing system that needs to keep credit card numbers encrypted. The company's customer-facing application runs as an Amazon Elastic Container Service (Amazon ECS) service behind an Application Load Balancer (ALB) in the us-west-2 Region. An Amazon CloudFront distribution is configured with the ALB as the origin. The company uses a third-party trusted certificate authority to provision its certificates.

The company is using HTTPS for encryption in transit. The company needs additional field-level encryption to keep sensitive data encrypted during processing so that only certain application components can decrypt the sensitive data.

Which combination of steps will meet these requirements? (Choose two.)

Options:

A.

Import the third-party certificate for the ALB. Associate the certificate with the ALB. Upload the certificate for the CloudFront distribution into AWS Certificate Manager (ACM) in us-west-2.

B.

Import the third-party certificate for the ALB into AWS Certificate Manager (ACM) in us-west-2. Associate the certificate with the ALB. Upload the certificate for the CloudFront distribution into ACM in the us-east-1 Region.

C.

Upload the private key that handles the encryption of the sensitive data to theCloudFront distribution. Create a field-level encryption profile and specify the fields that contain sensitive information. Create a field-level encryption configuration, and choose the newly created profile. Link the configuration to the appropriate cache behavior that is associated with sensitive POST requests.

D.

Upload the public key that handles the encryption of the sensitive data to the CloudFront distribution. Create a field-level encryption configuration, and specify the fields that contain sensitive information. Create a field-level encryption profile, and choose the newly created configuration. Link the profile to the appropriate cache behavior that is associated with sensitive GET requests.

E.

Upload the public key that handles the encryption of the sensitive data to the CloudFront distribution. Create a field-level encryption profile and specify the fields that contain sensitive information. Create a field-level encryption configuration, and choose the newly created profile. Link the configuration to the appropriate cache behavior that is associated with sensitive POST requests.

Buy Now
Questions 21

A company has multiple AWS accounts. Each account contains one or more VPCs. A new security guideline requires the inspection of all traffic between VPCs.

The company has deployed a transit gateway that provides connectivity between all VPCs. The company also has deployed a shared services VPC with Amazon EC2 instances that include IDS services for stateful inspection. The EC2 instances are deployed across three Availability Zones. The company has set up VPC associations and routing on the transit gateway. The company has migrated a few test VPCs to the new solution for traffic inspection.

Soon after the configuration of routing, the company receives reports of intermittent connections for traffic that crosses Availability Zones.

What should a network engineer do to resolve this issue?

Options:

A.

Modify the transit gateway VPC attachment on the shared services VPC by enabling cross-Availability Zone load balancing.

B.

Modify the transit gateway VPC attachment on the shared services VPC by enabling appliance mode support.

C.

Modify the transit gateway by selecting VPN equal-cost multi-path (ECMP) routing support.

D.

Modify the transit gateway by selecting multicast support.

Buy Now
Questions 22

A company has AWS accounts in an organization in AWS Organizations. The company has implemented Amazon VPC IP Address Manager (IPAM)in its networking AWS account. The company is using AWS Resource Access Manager (AWS RAM) to share IPAM pools with other AWS accounts. The company has created a top-level pool with a CIDR block of 10.0.0.0/8. For each AWS account, the company has created an IPAM pool within the top-level pool.

A network engineer needs to implement a solution to ensure that users in each AWS account cannot create new VPCs. The solution also must prevent users from associating a CIDR block with existing VPCs unless the CIDR block is from the IPAM pool for that account.

Which solution will meet these requirements?

Options:

A.

Create a new AWS Config rule to find all VPCs that are not configured to allocate their CIDR block from an IPAM pool. Invoke an AWS Lambda function to delete these VPCs.

B.

Create a new SCP in Organizations. Add a condition that denies the CreateVpc and AssociateVpcCidrBlock Amazon EC2 actions if the lpv4lpamPoolld context key value is not the ID of an IPAM pool.

C.

Create an AWS Lambda function to check for and delete all VPCs that are not configured to allocate their CIDR block from an IPAM pool. Invoke the Lambda function at regular intervals.

D.

Create an Amazon EventBridge rule to check for AWS CloudTrail events for the CreateVpc and AssociateVpcCidrBlock Amazon EC2 actions. Use the rule to invoke an AWS Lambda function to delete all VPCs that are not configured to allocate their CIDR block from an IPAM pool.

Buy Now
Questions 23

A company uses AWS Network Firewall to protect outgoing traffic for multiple VPCs that are in the same AWS account. Each VPC contains Amazon EC2 instances that host the company's applications. Each EC2 instance is tagged with the name of the application it hosts. The EC2 instances are in Auto Scaling groups.

A Network Firewall stateful rule group must remain up-to-date, even when an Auto Scaling group launches and terminates EC2 instances.

Which solution will meet this requirement with the LEAST implementation and administrative effort?

Options:

A.

Create a network ACL for each application. Reference the network ACL in the stateful rule group.

B.

Create a prefix list for each application. Reference the prefix list in the stateful rule group.

C.

Create an AWS Lambda function that queries the EC2 instance tags for each application name and then updates the stateful rule group with the IP address of each instance.

D.

Create a resource group for each application name. Reference the Amazon Resource Name (ARN) for the resource groups in the stateful rule group.

Buy Now
Questions 24

A company's existing AWS environment contains public application servers that run on Amazon EC2 instances. The application servers run in a VPC subnet. Each server is associated with an Elastic IP address.

The company has a new requirement for firewall inspection of all traffic from the internet before the traffic reaches any EC2 instances. A security engineer has deployed and configured a Gateway Load Balancer (GLB) in a standalone VPC with a fleet of third-party firewalls.

How should a network engineer update the environment to ensure that the traffic travels across the fleet of firewalls?

Options:

A.

Deploy a transit gateway. Attach a GLB endpoint to the transit gateway. Attach the application VPC to the transit gateway. Update the application subnet route table's default route destination to be the GLB endpoint. Ensure that the EC2 instances' security group allows traffic from the GLB endpoint.

B.

Update the application subnet route table to have a default route to the GLB. On the standalone VPC that contains the firewall fleet, add a route in the route table for the application VPC's CIDR block with the GLB endpoint as the destination. Update the EC2 instances' security group to allow traffic from the GLB.

C.

Provision a GLB endpoint in the application VPC in a new subnet. Create a gateway route table with a route that specifies the application subnet CIDR block as the destination and the GLB endpoint as the target. Associate the gateway route table with the internet gateway in the application VPC. Update the application subnet route table's default route destination to be the GLB endpoint.

D.

Instruct the security engineer to move the GLB into the application VPC. Create a gateway route table. Associate the gateway route table with the application subnet. Add a default route to the gateway route table with the GLB as its destination. Update the route table on the GLB to direct traffic from the internet gateway to the application servers. Ensure that the EC2 instances' security group allows traffic from the GLB.

Buy Now
Questions 25

A company has a VPC in the AWS Cloud. The company recently acquired a competitor that also has a VPC in the AWS Cloud. A network engineer discovers an IP address overlap between the two VPCs. Both VPCs require access to an AWS Marketplace partner service.

Which solution will ensure interoperability among the VPC hosted services and the AWS Marketplace partner service?

Options:

A.

Configure VPC peering with static routing between the VPCs. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

B.

Configure a NAT gateway in the VPCs. Configure default routes in each VPC to point to the local NAT gateway. Attach each NAT gateway to a transit gateway. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

C.

Configure AWS PrivateLink to facilitate connectivity between the VPCs and the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

D.

Configure a NAT instance in the VPCs. Configure default routes in each VPC to point to the local NAT instance. Configure an interface endpoint in each VPC to connect to the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

Buy Now
Questions 26

A company has a web application that runs in eight AWS Regions. In each Region, the application is hosted on multiple compute resources behind an Application Load Balancer (ALB).

The different Regions are using different domains. Each ALB is configured to accept only HTTPS traffic. Each ALB uses a certificate from AWS Certificate Manager (ACM).

The company wants to simplify the application’s appearance on the web by using a new single domain for all Regions. A network engineer needs to implement this change by designing a solution that also will minimize latency for the application's end users.

Which combination of actions will meet these requirements? (Choose three.)

Options:

A.

Use ACM to create an SSL/TLS certificate in the us-east-1 Region for the new domain.

B.

Set up latency-based routing in Amazon Route 53 for the new domain. Add the ALBs from all the Regions as targets.

C.

Create an alias record for the accelerator in Amazon Route 53 for the new domain.

D.

Create a standard accelerator in AWS Global Accelerator. Configure a listener for TCP traffic. Add all the ALBs as targets for the listener.

E.

Use ACM to create an SSLITLS certificate for each Region. Configure all the ALBs to use the certificate in their respective Regions.

F.

Create a custom routing accelerator in AWS Global Accelerator. Configure a listener for HTTPS traffic. Add all the ALBs as targets for the listener. Configure the accelerator to terminate TLS by using the SSLITLS certificate from ACM.

Buy Now
Questions 27

An education agency is preparing for its annual competition between schools. In the competition, students at schools from around the country solve math problems, complete puzzles, and write essays.

The IP addressing plan of all the schools is well-known and is administered centrally. The competition is hosted in the AWS Cloud and is not publicly available. All competition traffic must be encrypted in transit. Only authorized endpoints can access the competition. All the schools have firewall policies that block ICMP traffic.

A network engineer builds a solution in which all the schools access the competition through AWS Site-to-Site VPN connections. The network engineer uses BGP as the routing protocol. The network engineer must implement a solution that notifies schools when they lose connectivity and need to take action on their premises to address the issue.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Monitor the state of the VPN tunnels by using Amazon CloudWatch. Create a CloudWatch alarm that uses Amazon Simple Notification Service (Amazon SNS) to notifypeople at the affected school if the tunnels are down.

B.

Create a scheduled AWS Lambda function that pings each school's on-premises customer gateway device. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if the ping fails.

C.

Create a scheduled AWS Lambda function that uses the VPC Reachability Analyzer API to verify the connectivity. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

D.

Create an Amazon CloudWatch dashboard for each school to show all CloudWatch metrics for each school's Site-to-Site VPN connection. Share each dashboard with the appropriate school.

E.

Create a scheduled AWS Lambda function to monitor the existence of each school's routes in the VPC route table where VPN routes are propagated. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

Buy Now
Questions 28

A company needs to protect against potential botnet command and control traffic from any Amazon EC2 instances that is in in the company’s AWS Environment.

Which solution will meet these requirements?

Options:

A.

Use AWS Shield Advanced. Activate Shield Advanced protections on the EC2 instances to filter and block botnet traffic.

B.

Use Amazon Route 53 Resolver DNS Firewall. Add a rule to a rule group to use the AWSManagedDomainsBotnetCommandandControl managed domain list with an action to block botnet traffic.

C.

Use AWS WAF Bot Control. Configure a managed rule group that uses an AWS managed rule set to block botnet traffic.

D.

Use AWS Systems Manager. Run a Systems Manager Automation runbook on the EC2 instances to configure the instances to block botnet traffic.

Buy Now
Questions 29

A company has agreed to collaborate with a partner for a research project. The company has multiple VPCs in the us-east-1 Region that use CIDR blocks within 10.10.0.0/16. The VPCs are connected by a transit gateway that is named TGW-C in us-east-1. TGW-C has an Autonomous System Number (ASN) configuration value of 64520.

The partner has multiple VPCs in us-east-1 that use CIDR blocks within 172.16.0.0/16. The VPCs are connected by a transit gateway that is named TGW-P in us-east-1. TGW-P has an ASN configuration value of 64530.

A network engineer needs to establish network connectivity between the company's VPCs and the partner's VPCs in us-east-1.

Which solution will meet these requirements with MINIMUM changes to both networks?

Options:

A.

Create a new VPC in a new account. Deploy a router from AWS Marketplace. Share TGW-C and TGW-P with the new account by using AWS Resource Access Manager (AWS RAM). Associate TGW-C and TGW-P with the new VPC. Configure the router in the new VPC to route between TGW-C and TGW-P.

B.

Create an IPsec VPN connection between TGW-C and TGW-P. Configure the routing between the transit gateways to use the IPsec VPN connection.

C.

Configure a cross-account transit gateway peering attachment between TGW-C and TGW-P. Configure the routing between the transit gateways to use the peering attachment.

D.

Share TGW-C with the partner account by using AWS Resource Access Manager (AWS RAM). Associate the partner VPCs with TGW-C. Configure routing in the partner VPCs and TGW-C.

Buy Now
Questions 30

A network engineer needs to set up an Amazon EC2 Auto Scaling group to run a Linux-based network appliance in a highly available architecture. The network engineer is configuring the new launch template for the Auto Scaling group.

In addition to the primary network interface the network appliance requires a second network interface that will be used exclusively by the application to exchange traffic with hosts over the internet. The company has set up a Bring Your Own IP (BYOIP) pool that includes an Elastic IP address that should be used as the public IP address for the second network interface.

How can the network engineer implement the required architecture?

Options:

A.

Configure the two network interfaces in the launch template. Define the primary network interface to be created in one of the private subnets. For the second network interface, select one of the public subnets. Choose the BYOIP pool ID as the source of public IP addresses.

B.

Configure the primary network interface in a private subnet in the launch template. Use the user data option to run a cloud-init script after boot to attach the second network interface from a subnet with auto-assign public IP addressing enabled.

C.

Create an AWS Lambda function to run as a lifecycle hook of the Auto Scaling group when an instance is launching. In the Lambda function, assign a network interface to an AWS Global Accelerator endpoint.

D.

During creation of the Auto Scaling group, select subnets for the primary network interface. Use the user data option to run a cloud-init script to allocate a second network interface and to associate an Elastic IP address from the BYOIP pool.

Buy Now
Questions 31

A company is migrating an application to the AWS Cloud. The company has successfully provisioned and tested connectivity between AWS Direct Connect and the company's on-premises data center. The application runs on Amazon EC2 instances across multiple Availability Zones. The instances are in an Auto Scaling group.

The application communicates through HTTPS to a third-party vendor's data service that is hosted at the company’s data center. The data service implements a static ACL through explicit allow listing of client IP addresses.

A network engineer must design a network solution so that the migrated application can continue to access the vendor’s data service as the application scales.

Which solution will meet these requirements with the LEAST amount of ongoing change to the vendor's allow list?

Options:

A.

Configure a private NAT gateway in the subnets for each Availability Zone that the application runs in. Configure the application to target the NAT gateways instead of the data service directly. Update the data service's allow list to include the IP addresses of the NAT gateways.

B.

Configure an elastic network interface in the subnets for each Availability Zone that the application runs in. Associate the elastic network interfaces with the Auto Scaling group for the application. Update the data service's allow list to include the IP addresses of the elastic network interfaces.

C.

Configure an elastic network interface in the subnets for each Availability Zone that the application runs in. Launch an EC2 instance into each subnet. Attach the respective elastic network interfaces to the new EC2 instances. In the application subnet route tables, configure the new EC2 instances as the next destination for the data service. Update the data service’s allow list to include the IP addresses of the elastic network interfaces.

D.

Configure an Application Load Balancer (ALB) in the subnets for each Availability Zone that the application runs in. Configure an ALB-associated target group that contains a target that uses the IP address for the data service. Configure the application to target the ALB instead of the data service directly. Update the data service's allow list to include the IP addresses of the ALBs.

Buy Now
Questions 32

A company is deploying a web application into two AWS Regions. The company has one VPC in each Region. Each VPC has three Amazon EC2 instances as web servers behind an Application Load Balancer (ALB). The company already has configured an Amazon Route 53 public hosted zone for example.com. Users will access the application by using the fully qualified domain name (FQDN) of app.example.com.

The company needs a DNS solution that allows global users to access the application. The solution must route the users' requests to the Region that provides the lowest response time. The solution must fail over to the Region that provides the next-lowest response time if the application is unavailable in the initially intended Region.

Which solution will meet these requirements?

Options:

A.

For each ALB, create an A record that has a geolocation routing policy to route app.example.com to the IP addresses of the ALB. Configure a Route 53 HTTP health check that monitors each ALB by IP address. Associate the health check with the A records.

B.

Create an A record that has a geolocation routing policy to route app.example.com to the IP addresses for both ALBs. Configure a Route 53 health check that monitors TCP port 80 for each ALB by IP address. Associate the health check with the A records.

C.

Create an A record that has a latency-based routing policy to route app.example.com as an alias to one of the ALBs. Configure a Route 53 health check that monitors TCP port 80 for each ALB by IP address. Associate the health check with the A records.

D.

For each ALB, create an A record that has a latency-based routing policy to route app.example.com as an alias to the ALB. Set the value for Evaluate Target Health to Yes for the records.

Buy Now
Questions 33

A company uses a 4 Gbps AWS Direct Connect dedicated connection with a link aggregation group (LAG) bundle to connect to five VPCs that are deployed in the us-east-1 Region. Each VPC servesa different business unit and uses its own private VIF for connectivity to the on-premises environment. Users are reporting slowness when they access resources that are hosted on AWS.

A network engineer finds that there are sudden increases in throughput and that the Direct Connect connection becomes saturated at the same time for about an hour each business day. The company wants to know which business unit is causing the sudden increase in throughput. The network engineer must find out this information and implement a solution to resolve the problem.

Which solution will meet these requirements?

Options:

A.

Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.

B.

Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the bandwidth of the existing dedicated connection to 10 Gbps.

C.

Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the existing dedicated connection to a 5 Gbps hosted connection.

D.

Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.

Buy Now
Questions 34

A company's network engineer must implement a cloud-based networking environment for a network operations team to centrally manage. Other teams will use the environment. Each team must be able to deploy infrastructure to the environment and must be able to manage its own resources. The environment must feature IPv4 and IPv6 support and must provide internet connectivity in a dual-stack configuration.

The company has an organization in AWS Organizations that contains a workload account for the teams. The network engineer creates a new networking account in the organization.

Which combination of steps should the network engineer take next to meet the requirements? (Select THREE.)

Options:

A.

Create a new VPC. Associate an IPv4 CIDR block of 10.0.0.0/16 and specify an IPv6 block of 2001: db8:c5a:6000::/56. Provision subnets by assigning /24 IPv4 CIDR blocks and /64 IPv6 CIDR blocks.

B.

Create a new VPC. Associate an IPv4 CIDR block of 10.0.0.0/16 and use an Amazon-provided IPv6 CIDR block. Provision subnets by assigning /24 IPv4 CIDR blocks and 164 IPv6 CIDR blocks.

C.

Enable sharing of resources within the organization by using AWS Resource Access Manager (AWS RAM). Create a resource share in the networking account, select theprovisioned subnets, and share the provisioned subnets with the target workload account. Use the workload account to accept the resource share through AWS RAM.

D.

Enable sharing of resources within the organization by using AWS Resource Access Manager (AWS RAM). Create a resource share in the networking account, select the new VPC. and share the new VPC with the target workload account. Use the workload account to accept the resource share through AWS RAM.

E.

Create an internet gateway and an egress-only internet gateway. Deploy NAT gateways to the public subnets. Associate the internet gateway with the new VPC. Update the route tables. Associate the route tables with the relevant subnets.

F.

Create an internet gateway. Deploy NAT instances to public subnets. Update the route tables. Associate the route tables with the relevant subnets.

Buy Now
Questions 35

A global company is designing a hybrid architecture to privately access AWS resources in the us-west-2 Region. The company's existing architecture includes a VPC that uses RFC 1918 IP address space. The VPC is connected to an on-premises data center over AWS Direct Connect Amazon Route 53 provides name resolution within the VPC. Locally managed DNS servers in the data center provide DNS services to the on-premises hosts.

The company has applications in the data center that need to download objects from an Amazon S3 bucket in us-west-2.

Which solution can the company use to access Amazon S3 without using the public IP address space?

Options:

A.

Create an S3 interface endpoint in the VPC. Update the on-premises application configuration to use the Regional VPC endpoint DNS hostname that is mapped to the S3 interface endpoint.

B.

Create an S3 interface endpoint in the VPC. Configure a Route 53 Resolver inbound endpoint in the VPC. Set up the data center DNS servers to forward DNS queries for the S3 domain from on premises to the inbound endpoint.

C.

Create an S3 gateway endpoint in the VPC. Update the on-premises application configuration to use the hostname that is mapped to the S3 gateway endpoint.

D.

Create an S3 gateway endpoint in the VPC. Configure a Route 53 Resolver inbound endpoint in the VPC. Set up the data center DNS servers to forward DNS queries for the S3 domain from on premises to the inbound endpoint.

Buy Now
Questions 36

A company uses Amazon Route 53 to host a public hosted zone for example.com. A network engineer recently reduced the TTL on several records to 60 seconds. The network engineer wants to assess whether the change has increased the number of queries to Route 53 beyond the expected levels that the company identified before the change. The network engineer must obtain the number of queries that have been made to the example.com public hosted zone.

Which solution will provide this information?

Options:

A.

Create a new trail in AWS CloudTrail to include Route 53 data events. Send logs to Amazon CloudWatch Logs. Set up a CloudWatch metric filter to count the number of queries and create graphs.

B.

Use Amazon CloudWatch to access the AWS/Route 53 namespace and to check the DNSQuenes metric tor the public hosted zone.

C.

Use Amazon CloudWatch to access the AWS/Route 53 Resolver namespace and to check the InboundQueryVolume metric for a specific endpoint.

D.

Configure logging to Amazon CloudWatch for the public hosted zone. Set up a CloudWatch metric filter to count the number of queries and create graphs.

Buy Now
Questions 37

A company recently migrated its Amazon EC2 instances to VPC private subnets to satisfy a security compliance requirement. The EC2 instances now use a NAT gateway for internet access. After the migration, some long-running database queries from private EC2 instances to a publicly accessible third-party database no longer receive responses. The database query logs reveal that the queries successfully completed after 7 minutes but that the client EC2 instances never received the response.

Which configuration change should a network engineer implement to resolve this issue?

Options:

A.

Configure the NAT gateway timeout to allow connections for up to 600 seconds.

B.

Enable enhanced networking on the client EC2 instances.

C.

Enable TCP keepalive on the client EC2 instances with a value of less than 300 seconds.

D.

Close idle TCP connections through the NAT gateway.

Buy Now
Questions 38

A company is migrating applications from a data center to AWS. Many of the applications will need to exchange data with the company's on-premises mainframe.

The company needs to achieve 4 Gbps transfer speeds to meet peak traffic demands. A network engineer must design a highly available solution that maximizes resiliency. The solution must be able to withstand the loss of circuits or routers.

Which solution will meet these requirements?

Options:

A.

Order four 10 Gbps AWS Direct Connect connections that are evenly spread over two locations. Terminate one connection from each Direct Connect location to a router at the company location. Terminate the other connection from each Direct Connect location to a different router at the company location.

B.

Order two 10 Gbps AWS Direct Connect connections that are evenly spread over two locations. Terminate the connection from each Direct Connect location to a different router at the company location.

C.

Order four 1 Gbps AWS Direct Connect connections that are evenly spread over two locations. Terminate one connection from each Direct Connect location to a router at the company location. Terminate the other connection from each Direct Connect location to a different router at the company location.

D.

Order two 1 Gbps AWS Direct Connect connections that are evenly spread over two locations. Terminate the connection from each Direct Connect location to a different router at the company location.

Buy Now
Questions 39

A network engineer needs to monitor internet metrics for an application that is in a VPC. The metrics include user experiences such as health events, latency, and traffic insights.

The network engineer sets up Amazon CloudWatch Internet Monitor for the application. The engineer wants to push the internet health events to a third-party target.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Create a third-party API endpoint in Amazon EventBridge. Configure internet Monitor to send the events to the third-party API endpoint in EventBridge.

B.

Create a third-party API endpoint in Amazon EventBridge. Create a rule in EventBridge that uses Internet Monitor as the source and the third-party API endpoint in EventBridge as the destination.

C.

Create a third-party API endpoint in internet Monitor. Configure Internet Monitor to send the events to an Amazon S3 bucket. Configure an AWS Lambda function to send the events to the third-party API endpoint in Internet Monitor.

D.

Create a third-party API endpoint in Internet Monitor. Configure Internet Monitor to send the events to the third-party API endpoint in Internet Monitor.

Buy Now
Questions 40

A company has set up a NAT gateway in a single Availability Zone (AZ1) in a VPC (VPC1) to access the internet from Amazon EC2 workloads in the VPC. The EC2 workloads are running in private subnets in three Availability Zones (AZ1, AZ2, AZ3). The route table for each subnet is configured to use the NAT gateway to access the internet.

Recently during an outage, internet access stopped working for the EC2 workloads because of the NAT gateway's unavailability. A network engineer must implement a solution to remove the single point of failure from the architecture and provide built-in redundancy.

Which solution will meet these requirements?

Options:

A.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table for private subnets to route traffic to the virtual IP addresses of the two NAT gateways.

B.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table to point the AZ2 private subnets to the NAT gateway in AZ2. Configure the same route table to point the AZ3 private subnets to the NAT gateway in AZ3.

C.

Create a second VPC (VPC2). Set up two NAT gateways. Place each NAT gateway in a different VPC (VPC1 and VPC2) and in the same Availability Zone (AZ2). Configure a route table in VPC1 to point the AZ2 private subnets to one NAT gateway. Configure a route table in VPC2 to point the AZ2 private subnets to the second NAT gateway.

D.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table to point the AZ2 private subnets to the NAT gateway in AZ2. Configure a second route table to point the AZ3 private subnets to the NAT gateway in AZ3.

Buy Now
Questions 41

A company has critical VPC workloads that connect to an on-premises data center through two redundant active-passive AWS Direct Connect connections. However, a recent outage on one Direct Connect connection revealed that it takes more than a minute for traffic to fail over to the secondary Direct Connect connection. The company wants to reduce the failover time from minutes to seconds.

Which solution will provide the LARGEST reduction in the BGP failover time?

Options:

A.

Reduce the BGP hold-down timer that is configured on the BGP sessions on the Direct Connect connection VIFs.

B.

Configure an Amazon CloudWatch alarm for the Direct Connect connection state to invoke an AWS Lambda function to fail over the traffic.

C.

Configure Bidirectional Forwarding Detection (BFD) on the Direct Connect connections on the AWS side.

D.

Configure Bidirectional Forwarding Detection (BFD) on the Direct Connect connections on the on-premises router.

Buy Now
Questions 42

A company has developed an application on AWS that will track inventory levels of vending machines and initiate the restocking process automatically. The company plans to integrate this application with vending machines and deploy the vending machines in several markets around the world. The application resides in a VPC in the us-east-1 Region. The application consists of an Amazon Elastic Container Service (Amazon ECS) cluster behind an Application Load Balancer (ALB). The communication from the vending machines to the application happens over HTTPS.

The company is planning to use an AWS Global Accelerator accelerator and configure static IP addresses of the accelerator in the vending machines for application endpoint access. The application must be accessible only through the accelerator and not through a direct connection over the internet to the ALB endpoint.

Which solution will meet these requirements?

Options:

A.

Configure the ALB in a private subnet of the VPC. Attach an internet gateway without adding routes in the subnet route tables to point to the internet gateway. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB’s security group to only allow inbound traffic from the internet on the ALB listener port.

B.

Configure the ALB in a private subnet of the VPC. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB's security group to only allow inbound traffic from the internet on the ALB listener port.

C.

Configure the ALB in a public subnet of the VPAttach an internet gateway. Add routes in the subnet route tables to point to the internet gateway. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB's security group to only allow inbound traffic from the accelerator's IP addresses on the ALB listener port.

D.

Configure the ALB in a private subnet of the VPC. Attach an internet gateway. Add routes in thesubnet route tables to point to the internet gateway. Configure the accelerator with endpoint groups that include the ALB endpoint. Configure the ALB's security group to only allow inbound traffic from the accelerator's IP addresses on the ALB listener port.

Buy Now
Questions 43

A company wants to improve visibility into its AWS environment. The AWS environment consists of multiple VPCs that are connected to a transit gateway. The transit gateway connects to an on-premises data center through an AWS Direct Connect gateway and a pair of redundant Direct Connect connections that use transit VIFs. The company must receive notification each time a new route is advertised to AWS from on premises over Direct Connect.

What should a network engineer do to meet these requirements?

Options:

A.

Enable Amazon CloudWatch metrics on Direct Connect to track the received routes. Configure a CloudWatch alarm to send notifications when routes change.

B.

Onboard Transit Gateway Network Manager to Amazon CloudWatch Logs Insights. Use Amazon EventBridge (Amazon CloudWatch Events) to send notifications when routes change.

C.

Configure an AWS Lambda function to periodically check the routes on the Direct Connect gateway and to send notifications when routes change.

D.

Enable Amazon CloudWatch Logs on the transit VIFs to track the received routes. Create a metric filter Set an alarm on the filter to send notifications when routes change.

Buy Now
Questions 44

A company is using an Amazon CloudFront distribution that is configured with an Application Load Balancer (ALB) as an origin. A network engineer needs to implement a solution that requires

all inbound traffic to the ALB to come from CloudFront. The network engineer must implement the solution at the network layer rather than in the application.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Add an inbound rule to the ALB's security group to allow the AWS managed prefix list for CloudFront.

B.

Add an inbound rule to the network ACLs that are associated with the ALB's subnets. Use the AWS managed prefix list for CloudFront as the source in the rule.

C.

Configure CloudFront to add a custom HTTP header to the requests that CloudFront sends to the ALB.

D.

Associate an AWS WAF web ACL with the ALB. Configure the AWS WAF rules to allow traffic from the CloudFront IP set. Automatically update the CloudFront IP set by using an AWS Lambda function.

Buy Now
Questions 45

A network engineer needs to standardize a company's approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spokemodel. The company's network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.

What should the network engineer do to meet these requirements?

Options:

A.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

B.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.

C.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.

D.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Buy Now
Questions 46

A company has multiple firewalls and ISPs for its on-premises data center. The company has a single AWS Site-to-Site VPN connection from the company's on-premises data center to a transit gateway. A single ISP services the Site-to-Site VPN connection. Multiple VPCs are attached to the transit gateway.

A customer gateway that the Site-to-Site VPN connection uses fails. Connectivity is completely lost, but the company's network team does not receive a notification.

The network team needs to implement redundancy within a week in case a single customer gateway fails again. The team wants to use an Amazon CloudWatch alarm to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic if any tunnel of the Site-to-Site VPN connection fails.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Replace the existing customer gateway with a new router. Create a new Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatchTunnelState alarm for the VPN connection. Use a value of 0 for the alarm.

B.

Use a second customer gateway and a second ISP. Create a new Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatch TunnelState alarm for the VPN connection. Use a value of less than 1 for the alarm.

C.

Add an AWS Direct Connect connection to the existing Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatch TunnelState alarm for the VPN connection. Use a value of failed for the alarm.

D.

Use a second customer gateway with the existing ISP. Create a new Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatch TunnelState alarm for the VPN connection. Use a value of unavailable for the alarm.

Buy Now
Questions 47

A European car manufacturer wants to migrate its customer-facing services and its analytics platform from two on-premises data centers to the AWS Cloud. The company has a 50-mile (80.4 km) separation between its on-premises data centers and must maintain that separation between its two locations in the cloud. The company also needs failover capabilities between the two locations in the cloud.

The company's infrastructure team creates several accounts to separate workloads and responsibilities. The company provisions resources in the eu-west-3 Region and in the eu-central-1 Region. The company selects an AWS Direct Connect Partner in each Region and requests two resilient 1 Gbps fiber connections from each provider.

The company's network engineer must establish a connection between all VPCs in the accounts and between the on-premises network and the AWS Cloud. The solution must provide access to all services in both Regions in case of network issues.

Which solution will meet these requirements?

Options:

A.

Create a Direct Connect gateway. Create a private VIF on each of the Direct Connect connections. Attach the private VIFs to the Direct Connect gateway. Use equal-cost multi-path (ECMP) routing to aggregate the four connections across the two Regions. Attach the Direct Connect gateway directly to each VPC's virtual private gateway.

B.

Create a Direct Connect gateway. Create a transit gateway. Attach the transit gateway to the Direct Connect gateway. Create a transit VIF on each of the Direct Connect connections. Attach the transit VIFs to the Direct Connect gateway. Use a link aggregation group (LAG) to aggregate the four connections across the two Regions. Attach the transit gateway directly to each VPC.

C.

Create a Direct Connect gateway. Create a transit gateway in each Region. Attach the transit gateways to the Direct Connect gateway. Create a transit VIF on each of the Direct Connect connections. Attach the transit VIFs to the Direct Connect gateway. Peer the transit gateways. Attach the transit gateways in each Region to the VPCs in the same Region.

D.

Create a Direct Connect gateway. Create a private VIF on each of the Direct Connect connections. Attach the private VIFs to the Direct Connect gateway. Use a link aggregation group (LAG) to aggregate the four connections across the two Regions. Create a transit gateway. Attach the transit gateway to the Direct Connect gateway. Attach the transit gateway directly to each VPC.

Buy Now
Questions 48

A finance company runs multiple applications on Amazon EC2 instances in two VPCs that are within a single AWS Region. The company uses one VPC for stock trading applications. The company uses the second VPC for financial applications. Both VPCs are connected to a transit gateway that is configured as a multicast router.

In the stock trading VPC, an EC2 instance that has an IP address of 10.128.10.2 sends trading data over a multicast network to the 239.10.10.10 IP address on UDP Port 5102. The company recently launched two new EC2 instances in the financial application VPC. The new EC2 instances need to receive the multicast stock trading data from the EC2 instance that is in the stock trading VPC.

Which combination of steps should the company take to meet this requirement? (Choose three.)

Options:

A.

Add the elastic network interfaces of the two new EC2 instances as members of the multicast group by using the group IP address of 239.10.10.10.

B.

Add an inbound rule to the security groups that are attached to the multicast receiver instances. Configure the rule as follows:

Protocol: IGMP Version 2. Port: 5102, and Source: 239 10.10.10/32

C.

Create associations to two EC2 instance IDs on the financial application VPC transit gateway attachment under the transit gateway multicast domain.

D.

Create an association to EC2 instance subnets on the financial application VPC transit gateway attachment under the transit gateway multicast domain.

Add an inbound rule to the security groups that are attached to the multicast receiver instances. Configure the rule as follows.

E.

Protocol: UDP, Port: 5102, and Source: 10.128.10.2/32

F.

Add an inbound rule to the security groups that are attached to the multicast receiver instances. Configure the rule as follows:

Protocol: IGMP Version 2. Port: All, and Source: 0 0.0.0/32

Buy Now
Questions 49

A company is in the early stage of AWS Cloud adoption. The company has an application that is running in an on-premises data center in Asia. The company needs to deploy new applications in the us-east-1 Region. The applications in the cloud need connectivity to the on-premises data center.

The company needs to set up a communication channel between AWS and the data center. The solution must improve latency, minimize the possibility of performance impact from transcontinental routing over the public internet, and encrypt data in transit.

Which solution will meet these requirements in the LEAST amount of time?

Options:

A.

Create an AWS Site-to-Site VPN connection with acceleration turned on. Create a virtual private gateway. Attach the Site-to-Site VPN connection to the virtual private gateway. Attach the virtual private gateway to the VPC where the applications will be deployed.

B.

Create an AWS Site-to-Site VPN connection with acceleration turned on. Create a transit gateway. Attach the Site-to-Site VPN connection to the transit gateway. Create a transit gateway attachment to the VPC where the applications will be deployed.

C.

Create an AWS Direct Connect connection. Create a virtual private gateway. Create a public VIF and a private VIF that use the virtual private gateway. Create an AWS Site-to-Site VPN connection over the public VIF.

D.

Create an AWS Site-to-Site VPN connection with acceleration turned off. Create a transit gateway. Attach the Site-to-Site VPN connection to the transit gateway. Create a transit gateway attachment to the VPC where the applications will be deployed.

Buy Now
Questions 50

An insurance company is planning the migration of workloads from its on-premises data center to the AWS Cloud. The company requires end-to-end domain name resolution. Bi-directional DNS resolution between AWS and the existing on-premises environments must be established. The workloads will be migrated into multiple VPCs. The workloads also have dependencies on each other, and not all the workloads will be migrated at the same time.

Which solution meets these requirements?

Options:

A.

Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC, and sharethe Route 53 Resolver rules with the application accounts by using AW

B.

Configure a public hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC. and share the Route 53 Resolver rules with the application accounts by using AW

C.

Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPDefine Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPand s

Buy Now
Questions 51

A financial trading company is using Amazon EC2 instances to run its trading platform. Part of the company's trading platform includes a third-party pricing service that the EC2 instances communicate with over UDP on port 50000.

Recently, the company has had problems with the pricing service. Some of the responses from the pricing service appear to be incorrectly formatted and are not being processed successfully. The third-party vendor requests access to the data that the pricing service is returning. The third-party vendor wants to capture request and response data for debugging by logging in to an EC2 instance that accesses the pricing service. The company prohibits direct access to production systems and requires all log analysis to be performed in a dedicated monitoring account.

Which set of steps should a network engineer take to capture the data and meet these requirements?

Options:

A.

1. Configure VPC flow logs to capture the data that flows in the VPC.

2. Send the data to an Amazon S3 bucket.

3. In the monitoring account, extract the data that flows to the EC2 instance's IP address and filter the traffic for the UDP data.

4. Provide the data to the third-party vendor.

B.

1. Configure a traffic mirror filter to capture the UDP data.

2. Configure Traffic Mirroring to capture the traffic for the EC2 instance's elastic network interface.

3. Configure a packet inspection package on a new EC2 instance in the production environment. Use the elastic network interface of the new EC2 instance as the target for the traffic mirror.

4. Extract the data by using the packet inspection package.

C.

1. Configure a traffic mirror filter to capture the UDP data.

2. Configure Traffic Mirroring to capture the traffic for the EC2 instance's elastic network interface.

3. Configure a packet inspection package on a new EC2 instance in the monitoring account. Use the elastic network interface of the new EC2 instance as the target for the traffic mirror.

4. Extract the data by using the packet inspection package.

5

D.

1. Create a new Amazon Elastic Block Store (Amazon EBS) volume. Attach the EBS volume to the EC2 instance.

2. Log in to the EC2 instance in the production environment. Run the tcpdump command to capture the UDP data on the EBS volume.

3. Export the data from the EBS volume to Amazon S3.

4. Provide the data to the third-party vendor.

Buy Now
Questions 52

An organization is replacing a tape backup system with a storage gateway. there is currently no connectivity to AWS. Initial testing is needed.

What connection option should the organization use to get up and running at minimal cost?

Options:

A.

Use an internet connection.

B.

Set up an AWS VPN connection.

C.

Provision an AWS Direct Connection private virtual interface.

D.

Provision a Direct Connect public virtual interface.

Buy Now
Questions 53

A company has an application that runs on a fleet of Amazon EC2 instances. A new company regulation mandates that all network traffic to and from the EC2 instances must be sent to a centralized third-party EC2 appliance for content inspection.

Which solution will meet these requirements?

Options:

A.

Configure VPC flow logs on each EC2 network Interface. Publish the flow logs to an Amazon S3 bucket. Create a third-party EC2 appliance to acquire flow logs from the S3 bucket. Log in to the appliance to monitor network content.

B.

Create a third-party EC2 appliance in an Auto Scaling group fronted by a Network Load Balancer (NLB). Configure a mirror session. Specify the NLB as the mirror target. Specify a mirror filter to capture inbound and outbound traffic for the source of the mirror session, specify the EC2 elastic network interfaces for all the instances that host the application.

C.

Configure a mirror session. Specify an Amazon Data Firehose delivery stream as the mirror target Specify a mirror filter to capture inbound and outbound traffic. For the source of the mirror session, specify the EC2 elastic network interfaces for all the instances that host the application Create a third-party EC2 appliance. Send all traffic to the appliance through the Firehose delivery stream for content inspection.

D.

Configure VPC flow logs on each EC2 network interface. Send the logs to Amazon CloudWatch. Create a third-party EC2 appliance. Configure a CloudWatch filter to send the flow logs to Amazon Data Firehose to load the logs into the appliance.

Buy Now
Questions 54

A company has two AWS accounts one for Production and one for Connectivity. A network engineer needs to connect the Production account VPC to a transit gateway in the Connectivity account. The feature to auto accept shared attachments is not enabled on the transit gateway.

Which set of steps should the network engineer follow in each AWS account to meet these requirements?

Options:

A.

1. In the Production account: Create a resource share in AWS Resource Access Manager for the transit gateway. Provide the Connectivity account ID. Enable the feature to allow external accounts

2. In the Connectivity account: Accept the resource.

3. In the Connectivity account: Create an attachment to the VPC subnets.

4. In the Production account: Accept the attachment. Associate a route table with the attachment.

B.

1. In the Production account: Create a resource share in AWS Resource Access Manager for the VPC subnets. Provide the Connectivity account ID. Enable the feature to allow external accounts.

2. In the Connectivity account: Accept the resource.

3. In the Production account: Create an attachment on the transit gateway to the VPC subnets.

4. In the Connectivity account: Accept the attachment. Associate a route table with the a

C.

1. In the Connectivity account: Create a resource share in AWS Resource Access Manager for the VPC subnets. Provide the Production account ID. Enable the feature to allow external accounts.

2. In the Production account: Accept the resource.

3. In the Connectivity account: Create an attachment on the transit gateway to the VPC subnets.

4. In the Production account: Accept the attachment. Associate a route table with the att

D.

1. In the Connectivity account: Create a resource share in AWS Resource Access Manager for the transit gateway. Provide the Production account ID Enable the feature to allow external accounts.

2. In the Production account: Accept the resource.

3. In the Production account: Create an attachment to the VPC subnets.

4. In the Connectivity account: Accept the attachment. Associate a route table with the attachment.

Buy Now
Questions 55

A company is running a hybrid cloud environment. The company has multiple AWS accounts as part of an organization in AWS Organizations. The company needs a solution to manage a list of IPv4 on-premises hosts that will be allowed to access resources in AWS. The solution must provide version control for the list of IPv4 addresses and must make the list available to the AWS accounts in the organization.

Which solution will meet these requirements?

Options:

A.

Create a customer-managed prefix list. Add entries for the initial list of on-premises IPv4 hosts. Create a resource share in AWS Resource Access Manager. Add the managed prefix list to the resource share. Share the resource with the organization.

B.

Create a customer-managed prefix list. Add entries for the initial list of on-premises IPv4 hosts. Use AWS Firewall Manager to share the managed prefix list with the organization.

C.

Create a security group. Add inbound rule entries for the initial list of on-premises IPv4 hosts. Create a resource share in AWS Resource Access Manager. Add the security group to the resource share. Share the resource with the organization.

D.

Create an Amazon DynamoDB table. Add entries for the initial list of on-premises IPv4 hosts. Create an AWS Lambda function that assumes a role in each AWS account in the organization to authorize inbound rules on security groups based on entries from the DynamoDB table.

Buy Now
Questions 56

An online retail company is running a web application in the us-west-2 Region and serves consumers in the United States. The company plans to expand across several countries in Europe and wants to provide low latency for all its users.

The application needs to identify the users' IP addresses and provide localized content based on the users' geographic location. The application uses HTTP GET and POST methods for its functionality. The company also needs to develop a failover mechanism that works for GET and POST methods and is based on health checks. The failover must occur in less than 1 minute for all clients.

Which solution will meet these requirements?

Options:

A.

Configure a Network Load Balancer (NLB) for the application in each environment In the new AWS Regions. Create an AWS Global Accelerator accelerator that has endpoint groups that point to the NLBs in each Region.

B.

Configure an Application Load Balancer (ALB) for the application in each environment in the new AWS Regions. Create an AWS Global Accelerator accelerator that has endpoint groups that point to the ALBs in each Region.

C.

Configure an Application Load Balancer (ALB) for the application in each environment in the new AWS Regions. Create Amazon Route 53 public hosted zones that have failover routing policies.

D.

Configure a Network Load Balancer (NLB) for the application in each environment in the new AWS Regions. Create an Amazon CloudFront distribution. Configure an origin group with origin failover options.

Buy Now
Questions 57

A company has two teams: Team A and Team B. Team A has VPCs that run in Account A. The team uses a transit gateway (TGW-A) to route traffic between workloads that run in the different VPCs. Similarly, Team В has VPCs that run in Account B. Team В uses a different transit gateway (TGW-B) to route traffic between workloads that run in the different VPCs.

The company's network team manages the routing for Team A and Team В. The network team wants to retire TGW-B and use a single transit gateway to manage routing for the VPCs of both teams.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create a resource share for TGW-A Share TGW-A with Account B. Create VPC attachments for the VPCs in Account В. Configure routing for the VPCs in TGW-A route tables. Update the route tables of the VPCs in Account В to forward traffic to TGW-A. Delete TGW-B attachments and TGW-B.

B.

Create a resource share for TGW-A. Share TGW-A with Account В. Replicate the TGW-B configuration to TGW-A to automatically start routing changes for the VPCs in Account В. Delete TGW-B when routing changes are complete.

C.

Create a new transit gateway (TGW-C) in Account A. Create a resource share for TGW-C. Share TGW-C with Account B. Create VPC attachments for the VPCs in Account A and Account В. Configure routing for all the VPCs in TGW-C route tables. Update the routetables for the VPCs in Account A and Account В to forward traffic to TGW-C. Delete TGW-A attachments and TGW-B attachments. Delete TGW-A and TGW-B.

D.

Create a new transit gateway (TGW-C) in a new account (Account C). Create a resource share for TGW-C. Share TGW-C with Account A and Account B. Create VPC attachments for the VPCs in Account A and Account В. Configure routing for all the VPCs in TGW-C route tables. Update the route tables for the VPCs in Account A and Account В to forward traffic to TGW-C. Delete TGW-A attachments and TGW-B attachments. Delete TGW-A and TGW-B.

Buy Now
Questions 58

A company is replatforming a legacy data processing solution to AWS. The company deploys the solution on Amazon EC2 Instances in private subnets that are in one VPC.

The solution uses Amazon S3 for abject storage. Both the data that the solution processes and the data the solution produces are stored in Amazon S3. The solution uses Amazon DynamoDB to save its own state. The company collects flow logs for the VPC. Thesolution uses one NAT gateway to register its license through the internet. A software vendor provides a specific hostname so the solution can register its license.

The company notices that the AWS bill exceeds the projected budget for the solution. A network engineer uses AWS Cost Explorer to investigate the bill. The network engineer notices that the USE2-NatGateway-Bytes($) usage type is the root cause of the higher than expected bill.

What should the network engineer do to resolve the issue? (Choose two.)

Options:

A.

Set up Amazon VPC Traffic Mirroring. Analyze the traffic to identify the traffic that the NAT gateway processes.

B.

Examine the VPC flow logs to identity the traffic that traverses the NAT gateway.

C.

Set up an AWS Cost and Usage Report in the AWS Billing and Cost Management console. Examine the report to find more details about the NAT gateway charges.

D.

Verify that the security groups attached to the EC2 instances allow outgoing traffic only to the IP addresses that the hostname resolves to, the VPC CIDR block, and the AWS IP address ranges for Amazon S3 and DynamoDB.

E.

Verify that the gateway VPC endpoints for Amazon S3 and DynamoDB are both set up and associated with the route tables of the private subnets.

Buy Now
Questions 59

A company runs a workload in a single VPC on AWS. The company’s architecture contains several interface VPC endpoints for AWS services, including Amazon CloudWatch Logs and AWS Key Management Service (AWS KMS). The endpoints are configured to use a shared security group. The security group is not used for any other workloads or resources.

After a security review of the environment, the company determined that the shared security group is more permissive than necessary. The company wants to make the rules associated with the security group more restrictive. The changes to the security group rules must not prevent the resources in the VPC from using AWS services through interface VPC endpoints. The changes must prevent unnecessary access.

The security group currently uses the following rules:

• Inbound - Rule 1

Protocol: TCP

Port: 443

Source: 0.0.0.0/0

• Inbound - Rule 2

Protocol: TCP

Port: 443

Source: VPC CIDR

• Outbound - Rule 1

Protocol: All

Port: All

Destination: 0.0.0.0/0

Which rule or rules should the company remove to meet with these requirements?

Options:

A.

Outbound - Rule 2

B.

Inbound - Rule 1 and Outbound - Rule 1

C.

Inbound - Rule 2 and Outbound - Rule 1

D.

Outbound - Rule 1

Buy Now
Questions 60

Your security team implements a host-based firewall on all of your Amazon Elastic Compute Cloud (EC2) instances to block all outgoing traffic. Exceptions must be requested for each specific requirement. Until you request a new rule, you cannot access the instance metadata service. Which firewall rule should you request to be added to your instances to allow instance metadata access?

Options:

A.

Inbound; Protocol tcp; Source [Instance’s EIP]; Destination 169.254.169.254

B.

Inbound; Protocol tcp; Destination 169.254.169.254; Destination port 80

C.

Outbound; Protocol tcp; Destination 169.254.169.254; Destination port 80

D.

Outbound; Protocol tcp; Destination 169.254.169.254; Destination port 443

Buy Now
Questions 61

An international company provides early warning about tsunamis. The company plans to use IoT devices to monitor sea waves around the world. The data that is collected by the IoT devices must reach the company’s infrastructure on AWS as quickly as possible. The company is using three operation centers around the world. Each operation center is connected to AWS through Its own AWS Direct Connect connection. Each operation center is connected to the internet through at least two upstream internet service providers.

The company has its own provider-independent (PI) address space. The IoT devices use TCP protocols for reliable transmission of the data they collect. The IoT devices have both landline and mobile internet connectivity. The infrastructure and the solution will be deployed in multiple AWS Regions. The company will use Amazon Route 53 for DNS services.

A network engineer needs to design connectivity between the IoT devices and the services that run in the AWS Cloud.

Which solution will meet these requirements with the HIGHEST availability?

Options:

A.

Set up an Amazon CloudFront distribution with origin failover. Create an origin group for each Region where the solution is deployed.

B.

Set up Route 53 latency-based routing. Add latency alias records. For the latency alias records,set the value of Evaluate Target Health to Yes.

C.

Set up an accelerator in AWS Global Accelerator. Configure Regional endpoint groups and health checks.

D.

Set up Bring Your Own IP (BYOIP) addresses. Use the same PI addresses for each Region where the solution is deployed.

Buy Now
Questions 62

A media company is planning to host an event that the company will live stream to users. The company wants to use Amazon CloudFront.

A network engineer creates a primary origin and a secondary origin for CloudFront. Theengineer needs to ensure that the primary origin can fail over to the secondary origin within 15 seconds if a disruption occurs.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Configure a Lambda@Edge function to check the health status of both origins every 10 seconds. Reroute incoming requests when the origin health status is unhealthy.

B.

Create a Network Load Balancer (NLB) in front of both origins Configure the NLB as the origin in CloudFront.

C.

Set the CloudFront origin connection timeout value to 5 seconds Set the origin connection attempts value to 2.

D.

Configure a Lambda@Edge function to monitor incoming requests for an origin response. Reroute incoming requests if no response is received from the primary origin within 10 seconds.

Buy Now
Questions 63

A company has users who work from home. The company wants to move these users to Amazon WorkSpaces for additional security visibility.

The company has deployed WorkSpaces in its own AWS account in VPC A. A network engineer decides to provide the security visibility by using two firewall appliances behind a Gateway Load Balancer (GWLB). The network engineer provisions another VPC, VPC B, in a separate account and deploys the two firewall appliances in separate Availability Zones.

What should the network engineer do to configure the network connectivity for this solution?

Options:

A.

Create a GWLB in VPC A with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the WorkSpaces account to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point the default route to the VPC endpoint.

B.

Create a GWLB in VPC B with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the WorkSpaces account to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point the default route to the GWLB endpoint.

C.

Create a GWLB in VPC B with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the WorkSpaces account to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point the WorkSpaces subnet to the VPC endpoint.

D.

Create a GWLB in VPC B with the firewall appliance instances as targets. Use the GWLB to create a GWLB endpoint. Add the AWS principal ARN of the account that contains the firewall appliances to the principal allow list of the GWLB endpoint. In the WorkSpaces account, create a VPC endpoint and specify the service name that the AWS Management Console provides for the GWLB endpoint. Modify the route tables of VPC A to point thedefault route t

Buy Now
Questions 64

A company uses transit gateways to route traffic between the company's VPCs. Each transit gateway has a single route table. Each route table contains attachments and routes for the VPCs that are in the same AWS Region as the transit gateway. The route tables in each VPC also contain routes to all the other VPC CIDR ranges that are available through the transit gateways. Some VPCs route to local NAT gateways.

The company plans to add many new VPCs soon. A network engineer needs a solution to add new VPC CIDR ranges to the route tables in each VPC.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Create a new customer-managed prefix list. Add all VPC CIDR ranges to the new prefix list. Update the route tables in each VPC to use the new prefix list ID as the destination and the appropriate transit gateway ID as the target.

B.

Turn on default route table propagation for the transit gateway route tables. Turn on route propagation for each route table in each VPC.

C.

Update the route tables in each VPC to use 0.0.0.010 as the destination and the appropriate transit gateway ID as the target.

D.

Turn on default route table association for the transit gateway route tables. Turn on route propagation for each route table in each VPC.

Buy Now
Questions 65

A company’s network engineer needs to design a new solution to help troubleshoot and detect network anomalies. The network engineer has configured Traffic Mirroring. However, the mirrored traffic is overwhelming the Amazon EC2 instance that is the traffic mirror target. The EC2 instancehosts tools that the company’s security team uses to analyze the traffic. The network engineer needs to design a highly available solution that can scale to meet the demand of the mirrored traffic.

Which solution will meet these requirements?

Options:

A.

Deploy a Network Load Balancer (NLB) as the traffic mirror target. Behind the NLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

B.

Deploy an Application Load Balancer (ALB) as the traffic mirror target. Behind the ALB, deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during non-business hours.

C.

Deploy a Gateway Load Balancer (GLB) as the traffic mirror target. Behind the GLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

D.

Deploy an Application Load Balancer (ALB) with an HTTPS listener as the traffic mirror target. Behind the ALB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during active events or business hours.

Buy Now
Questions 66

A company is migrating critical applications to AWS. The company has multiple accounts and VPCs that are connected by a transit gateway.

A network engineer must design a solution that performs deep packet inspection for any traffic that leaves a VPC network boundary. All inspected traffic and the actions that are taken on the traffic must be logged in a central log account.

Which solution will meet these requirements with the LEAST administrative overhead?

Options:

A.

Create a central network VPC that includes an attachment to the transit gateway. Update the VPC and transit gateway route tables to support the new attachment. Deploy an AWS Gateway Load Balancer that is backed by third-party, next-generation firewall appliances to the central network VPC. Create a policy that contains the rules for deep packet inspection. Attach the policy to the firewall appliances. Create an Amazon S3 bucket in the centr

B.

Create a central network VPC that includes an attachment to the transit gateway. Update the VPC and transit gateway route tables to support the new attachment. Deploy an AWS Application Load Balancer that is backed by third-party, next-generation firewall appliances to the central network VPC. Create a policy that contains the rules for deep packet inspection. Attach the policy to the firewall appliances. Create a syslog server in the centr

C.

Deploy network ACLs and security groups to each VPC. Attach the security groups to active network interfaces. Associate the network ACLs with VPC subnets. Create rules for the network ACLs and security groups to allow only the required traffic flows between subnets and network interfaces. Create an Amazon S3 bucket in the central log account. Configure a VPC flow log that captures and saves all traffic flows to the S3 bucket.

D.

Create a central log VPC and an attachment to the transit gateway. Update the VPC and transit gateway route tables to support the new attachment. Deploy an AWS Network Load Balancer (NLB) that is backed by third-party, next-generation intrusion detection system (IDS) security appliances to the central VPC. Activate rules on the security appliances to monitor for intrusion signatures. For each network interface, create a VPC Traffic Mirrorin

Buy Now
Questions 67

A company has a global network and is using transit gateways to connect AWS Regions together. The company finds that two Amazon EC2 instances in different Regions are unable to communicate with each other. A network engineer needs to troubleshoot this connectivity issue.

What should the network engineer do to meet this requirement?

Options:

A.

Use AWS Network Manager Route Analyzer to analyze routes in the transit gateway route tables and in the VPC route tables. Use VPC flow logs to analyze the IP traffic that security group rules and network ACL rules accept or reject in the VPC.

B.

Use AWS Network Manager Route Analyzer to analyze routes in the transit gateway route tables. Verify that the VPC route tables are correct. Use AWS Firewall Manager to analyze the IP traffic that security group rules and network ACL rules accept or reject in the VPC.

C.

Use AWS Network Manager Route Analyzer to analyze routes in the transit gateway route tables. Verify that the VPC route tables are correct. Use VPC flow logs to analyze the IP traffic that security group rules and network ACL rules accept or reject in the VPC.

D.

Use VPC Reachability Analyzer to analyze routes in the transit gateway route tables. Verify that the VPC route tables are correct. Use VPC flow logs to analyze the IP traffic that security group rules and network ACL rules accept or reject in the VPC.

Buy Now
Questions 68

You deploy an Amazon EC2 instance that runs a web server into a subnet in a VPC. An Internet gateway is attached, and the main route table has a default route (0.0.0.0/0) configured with a targetof the Internet gateway.

The instance has a security group configured to allow as follows:

    Protocol: TCP

    Port: 80 inbound, nothing outbound

The Network ACL for the subnet is configured to allow as follows:

    Protocol: TCP

    Port: 80 inbound, nothing outbound

When you try to browse to the web server, you receive no response.

Which additional step should you take to receive a successful response?

Options:

A.

Add an entry to the security group outbound rules for Protocol: TCP, Port Range: 80

B.

Add an entry to the security group outbound rules for Protocol: TCP, Port Range: 1024-65535

C.

Add an entry to the Network ACL outbound rules for Protocol: TCP, Port Range: 80

D.

Add an entry to the Network ACL outbound rules for Protocol: TCP, Port Range: 1024-65535

Buy Now
Questions 69

A company is running business applications on AWS. The company uses 50 AWS accounts, thousands of VPCs. and 3 AWS Regions across the United States and Europe.

A network engineer needs to establish network connectivity between an on-premises data center and the Regions. The network engineer also must establish connectivity between the VPCs. On-premises users and applications must be able to connect to applications that run in the VPCs.

The company has an existing AWS Direct Connect connection that the network engineer can use. The network engineer creates a transit gateway in each Region and configures the transit gateways as inter-Region peers.

Which solution will provide network connectivity from the on-premises data center to the Regions and will provide inter-VPC communications across the different Regions?

Options:

A.

Create a private VIF with a gateway type of virtual private gateway. Configure the private VIF to use a virtual private gateway that is associated with one of the VPCs.

B.

Create a private VIF to a new Direct Connect gateway. Associate the new Direct Connect gateway with a virtual private gateway in each VPC.

C.

Create a transit VIF with a gateway association to a new Direct Connect gateway. Associate each transit gateway with the new Direct Connect gateway.

D.

Create an AWS Site-to-Site VPN connection that uses a public VIF for the Direct Connect connection Attach the Site-to-Site VPN connection to the transit gateways.

Buy Now
Questions 70

A company is deploying third-party firewall appliances for traffic inspection and NAT capabilities in its VPC. The VPC is configured with private subnets and public subnets. The company needs to deploy the firewall appliances behind a load balancer.

Which architecture will meet these requirements MOST cost-effectively?

Options:

A.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

B.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

C.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

D.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

Buy Now
Questions 71

A company hosts a web application on Amazon EC2 instances behind an Application Load Balancer (ALB). The ALB is the origin in an Amazon CloudFront distribution. The company wants to implement a custom authentication system that will provide a token for its authenticated customers.

The web application must ensure that the GET/POST requests come from authenticated customers before it delivers the content. A network engineer must design a solution that gives the web application the ability to identify authorized customers.

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Use the ALB to inspect the authorized token inside the GET/POST request payload. Use an AWS Lambda function to insert a customized header to inform the web application of an authenticated customer request.

B.

Integrate AWS WAF with the ALB to inspect the authorized token inside the GET/POST request payload. Configure the ALB listener to insert a customized header to inform the web application of an authenticated customer request.

C.

Use an AWS Lambda@Edge function to inspect the authorized token inside the GET/POST request payload. Use the Lambda@Edge function also to insert a customized header to inform the web application of an authenticated customer request.

D.

Set up an EC2 instance that has a third-party packet inspection tool to inspect the authorized token inside the GET/POST request payload. Configure the tool to insert a customized header to inform the web application of an authenticated customer request.

Buy Now
Questions 72

A banking company has an application that must connect to specific public IP addresses from a VPC. A network engineer has configured routes in the route table that is associated with the application's subnet to the required public IP addresses through an internet gateway.

The network engineer needs to set up email notifications that will alert the network engineer when a user adds a default route to the application subnet's route table with the internet gateway as a target.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Create an AWS Lambda function that reads the routes in the route table and sends an email notification. Configure the Lambda function to send an email notification if any route is configured with 0.0.0.0/0 or ::/0 CIDRs to the internet gateway. Configure the Lambda function to run every minute.

B.

Create an AWS Lambda function that will be invoked by an Amazon EC2 CreateRoute API call. Configure the Lambda function to send an email notification. Configure the Lambda function to send an email notification if any route is configured with 0.0.0.0/0 or ::/0 CIDRs to the internet gateway.

C.

Create AWS Config rules for the route table by using the internet-gateway-authorized-vpc-only managed rule. Create an Amazon EventBridge rule to match the AWS Config rule and to route to an Amazon Simple Notification Service (Amazon SNS) topic to send an email notification.

D.

Create an AWS Config rule for the route table by using the no-unrestricted-route-to-igw managed rule. Create an Amazon EventBridge rule to match the AWS Config rule and to route to an Amazon Simple Notification Service (Amazon SNS) topic to send an email notification.

Buy Now
Questions 73

A government contractor is designing a multi-account environment with multiple VPCs for a customer. A network security policy requires all traffic between any two VPCs to be transparently inspected by a third-party appliance.

The customer wants a solution that features AWS Transit Gateway. The setup must be highly available across multiple Availability Zones, and the solution needs to support automated failover. Furthermore, asymmetric routing is not supported by the inspection appliances.

Which combination of steps is part of a solution that meets these requirements? (Choose two.)

Options:

A.

Deploy two clusters that consist of multiple appliances across multiple Availability Zones in a designated inspection VPC. Connect the inspection VPC to the transit gateway by using a VPC attachment. Create a target group, and register the appliances with the target group. Create a Network Load Balancer (NLB), and set it up to forward to the newly created target group. Configure a default route in the inspection VPCs transit gateway subnet

B.

Deploy two clusters that consist of multiple appliances across multiple Availability Zones in a designated inspection VPC. Connect the inspection VPC to the transit gateway by using a VPC attachment. Create a target group, and register the appliances with the target group. Create a Gateway Load Balancer, and set it up to forward to the newly created target group. Configure a default route in the inspection VPC’s transit gateway subnet towar

C.

Configure two route tables on the transit gateway. Associate one route table with all the attachments of the application VPCs. Associate the other route table with the inspection VPC’s attachment. Propagate all VPC attachments into the inspection route table. Define a static default route in the application route table. Enable appliance mode on the attachment that connects the inspection VPC.

D.

Configure two route tables on the transit gateway. Associate one route table with all the attachments of the application VPCs. Associate the other route table with the inspection VPCs attachment. Propagate all VPC attachments into the application route table. Define a static default route in the inspection route table. Enable appliance mode on the attachment that connects the inspection VPC.

E.

Configure one route table on the transit gateway. Associate the route table with all the VPCs. Propagate all VPC attachments into the route table. Define a static default route in the route table.

Buy Now
Questions 74

A company is establishing hybrid cloud connectivity from an on-premises environment to AWS in the us-east-1 Region. The company is using a 10 Gbps AWS Direct Connect dedicated connection. The company has two accounts in AWS. Account A has transit gateways in four AWS Regions. Account В has transit gateways in three Regions. The company does not plan to expand.

To meet security requirements the company's accounts must have separate cloud infrastructure.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create one Direct Connect gateway in us-east-1. Use AWS Resource Access Manager (AWS RAM) to share the Direct Connect gateway with each account. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway. Create a transit VIF for Account B. Associate the three transit gateways inAccount В to the Direct Connect gateway.

B.

Create one Direct Connect gateway in us-east-1 for Account A. Create a second Direct Connect gateway in us-east-1 for Account B. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway in Account A. Create a transit VIF for Account B. Associate the three transit gateways in Account В to the Direct Connect gateway in Account В.

C.

Create one Direct Connect gateway in us-east-1. Use AWS Resource Access Manager (AWS RAM) to share the Direct Connect gateway with each account. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway. Order a new 10 Gbps Direct Connect dedicated connection for Account B. Create a transit VIF on the new Direct Connect connection for Account B. Associate the three transit gateways in

D.

Create one Direct Connect gateway in us-east-1 for Account A. Create a second Direct Connect gateway in us-east-1 for Account B. Create a transit VIF for Account A. Associate the four transit gateways in Account A to the Direct Connect gateway in Account A. Order a new 10 Gbps Direct Connect dedicated connection for Account В. Create a transit VIF on the new Direct Connect connection for Account В. Associate the three transit gateways in Ac

Buy Now
Questions 75

A company is planning to use an AWS Transit Gateway hub and spoke architecture to migrate to AWS. The current on-premises multi-protocol label switching (MPLS) network has strict controls that enforce network segmentation by using MPLS VPNs. The company has provisioned two 10 Gbps AWS Direct Connect connections to provide resilient, high-speed, low-latency connectivity to AWS.

A security engineer needs to apply the concept of network segmentation to the AWS environment to ensure that virtual routing and forwarding (VRF) is logically separated for each of the company's software development environments. The number of MPLS VPNs will increase in the future. On-premises MPLS VPNs will have overlapping address space. The company's AWS network design must support overlapping address space for the VPNs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a software-defined WAN (SD-WAN) head-end virtual appliance and an SD-WAN controller into a Transit Gateway Connect VPC. Configure the company's edge routers to be managed by the new SD-WAN controller and to use SD-WAN to segment the traffic into the defined segments for each of the company's development environments.

B.

Configure IPsec VPNs on the company edge routers for each MPLS VPN for each of the company's development environments. Attach each IPsec VPN tunnel to a discrete MPLS VPN. Configure AWS Site-to-Site VPN connections that terminate at a transit gateway for each MPLS VPN. Configure a transit gateway route table that matches the MPLS VPN for each Transit Gateway VPN attachment.

C.

Create a transit VPC that terminates at the AWS Site-to-Site VRF-aware IPsec VPN. Configure IPsec VPN connections to each VPC for each of the company's development environment VRFs.

D.

Configure a Transit Gateway Connect attachment for each MPLS VPN between the company's edge routers and Transit Gateway. Configure a transit gateway route table that matches the MPLS VPN for each of the company's development environments.

Buy Now
Questions 76

A company uses a 1 Gbps AWS Direct Connect connection to connect its AWS environment to its on-premises data center. The connection provides employees with access to an application VPC that is hosted on AWS. Many remote employees use a company-provided VPN to connect to the data center. These employees are reporting slowness when they access the application during business hours. On-premises users have started to report similar slowness while they are in the office.

The company plans to build an additional application on AWS. On-site and remote employees will use the additional application. After the deployment of this additional application, the company will need 20% more bandwidth than the company currently uses. With the increased usage, the company wants to add resiliency to the AWS connectivity. A network engineer must review the current implementation and must make improvements within a limited budget.

What should the network engineer do to meet these requirements MOST cost-effectively?

Options:

A.

Set up a new 1 Gbps Direct Connect dedicated connection to accommodate the additional traffic load from remote employees and the additional application. Create a link aggregation group (LAG).

B.

Deploy an AWS Site-to-Site VPN connection to the application VPC. Configure the on-premises routing for the remote employees to connect to the Site-to-Site VPN connection.

C.

Deploy Amazon Workspaces into the application VPInstruct the remote employees to connect to Workspaces.

D.

Replace the existing 1 Gbps Direct Connect connection with two new 2 Gbps Direct Connect hosted connections. Create an AWS Client VPN endpoint in the application VPC. Instruct the remote employees to connect to the Client VPN endpoint.

Buy Now
Questions 77

A company has developed a new web application on AWS. The application runs on Amazon Elastic Container Service (Amazon ECS) on AWS Fargate behind an Application Load Balancer (ALB) in the us-east-1 Region. The application uses Amazon Route 53 to host the DNS records for the domain. The content that is served from the website is mostly static images and files that are not updated frequently. Most of the traffic to the website from end users will originate from the United States. Some traffic will originate from Canada and Europe.

A network engineer needs to design a solution that will reduce latency for end users at the lowest cost. The solution also must ensure that all traffic is encrypted in transit until the traffic reaches the ALB.

Which solution will meet these requirements?

Options:

A.

Configure the ALB to use an AWS Global Accelerator accelerator In us-east-1. Create a secure HTTPS listener. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the DNS name that is assigned to the accelerator for the ALB.

B.

Configure the ALB to use a secure HTTPS listener Create an Amazon CloudFront distribution. Set the origin domain name to point to the DNS record that is assigned to the ALB. Configure the CloudFront distribution to use an SSL certificate. Set all behaviors to force HTTPS. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the DNS name that is assigned to the ALB.

C.

Configure the ALB to use a secure HTTPS listener. Create an Amazon CloudFront distribution. Set the origin domain name to point to the DNS record that is assigned to the ALB. Configure the CloudFront distribution to use an SSL certificate and redirect HTTP to HTTPS. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the CloudFront distribution.

D.

Configure the ALB to use an AWS Global Accelerator accelerator in us-east-1. Create a secure HTTPS listener. Create a second application stack on Amazon ECS on Fargate in the eu-west-1 Region Create another secure HTTPS listener. Create an alias record inAmazon Route 53 for the custom domain name. Configure the alias record to use a latency-based routing policy to route to the DNS name that is assigned to the accelerator for the ALBs.

Buy Now
Questions 78

A network engineer is evaluating a network setup for a global retail company. The company has an AWS Direct Connect connection between its on-premises data center and the AWS Cloud. The company has AWS resources in the eu-west-2 Region. These resources consist of multiple VPCs that are attached to a transit gateway.

The company recently provisioned a few AWS resources in the eu-central-1. Region in a single VPC close to its users in this area. The network engineer must connect the resources in eu-central-1 with the on-premises data center and the resources in eu-west-2. The solution must minimize changes to the Direct Connect connection.

What should the network engineer do to meet these requirements?

Options:

A.

Create a new virtual private gateway. Attach the new virtual private gateway to the VPC in eu-central-1. Use a transit VIF to connect the VPC and the Direct Connect router.

B.

Create a new transit gateway in eu-central-1. Create a peering attachment request to the transit gateway in eu-west-2. Add a static route in the transit gateway route table in eu-central-1 to point to the transit gateway peering attachment. Accept the peering request. Add a static route in the transit gateway route table in eu-west-2 to point to the new transit gateway peering attachment.

C.

Create a new transit gateway in eu-central-1. Use an AWS Site-to-Site VPN connection to peer both transit gateways. Add a static route in the transit gateway route table in eu-central-1 to point to the transit gateway VPN attachment. Add a static route in the transit gateway route table in eu-west-2 to point to the new transit gateway peering attachment.

D.

Create a new virtual private gateway. Attach the new virtual private gateway to the VPC in eu-central-1. Use a public VIF to connect the VPC and the Direct Connect router.

Buy Now
Questions 79

A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.

A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.

B.

Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C.

Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

D.

Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.

E.

Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Buy Now
Questions 80

A company has a hybrid environment that connects an on-premises data center to the AWS Cloud. The hybrid environment uses a 10 Gbps AWS Direct Connect dedicated connection. The Direct Connect connection has multiple private VIFs that terminate in multiple VPCs.

To comply with regulations, the company must encrypt all WAN traffic, regardless of the underlying transport. The company needs to implement an encryption solution that will not affect the company's bandwidth capacity.

Which solution will meet these requirements?

Options:

A.

Create a public VIF. Configure a new AWS Site-to-Site VPN connection to use the new public VIF.

B.

Configure MAC security (MACsec) support on the port of the existing Direct Connect connection. Change the encryption mode to must_encrypt.

C.

Configure a new Direct Connect connection that supports MAC security (MACSec) Associate the existing VIFs to the new Direct Connect connection.

D.

Create a public VIF. Configure a new private IP VPN that uses the Direct Connect connection.

Buy Now
Questions 81

A company's security guidelines state that all outbound traffic from a VPC to the company's on-premises data center must pass through a security appliance. The security appliance runs on an Amazon EC2 instance. A network engineer needs to improve the network performance between the on-premises data center and the security appliance.

Which actions should the network engineer take to meet these requirements? (Choose two.)

Options:

A.

Use an EC2 instance that supports enhanced networking.

B.

Send outbound traffic through a transit gateway.

C.

Increase the EC2 instance size.

D.

Place the EC2 instance in a placement group within the VPC.

E.

Attach multiple elastic network interfaces to the EC2 instance.

Buy Now
Questions 82

A company has an application VPC and a networking VPC that are connected through VPC peering. The networking VPC contains a Network Load Balancer (NLB). The application VPC contains Amazon EC2 instances that run an application. The EC2 instances are part of a target group that is associated with the NLB in the networking VPC.

The company configures a third VPC and peers it to the networking VPC. The new VPC contains a new version of the existing application. The new version of the application runs on new EC2 instances in an application subnet. The new version of the application runs in a different Availability Zone than that original version of the application.

The company needs to establish connectivity between the NLB and the new version of the application.

Which combination of steps will meet this requirement? (Choose three.)

Options:

A.

Register the new application EC2 instances with the NLB by using the instance IDs.

B.

Register the new application EC2 instances with the NLB by using instance IP addresses.

C.

Configure the NLB in the Availability Zone where the new application EC2 instances run.

D.

Configure the NLB to use zonal shift.

E.

Configure the network ACL for the application subnet in the new VPC to allow outbound connections.

F.

Configure the network ACL for the application subnet in the new VPC to allow inbound connections and outbound connections.

Buy Now
Questions 83

A company wants to use an AWS Network Firewall firewall to secure its workloads in the cloud through network traffic inspection. The company must record complete metadata information, such as source/destination IP addresses and protocol type. The company must also record all network traffic flows and any DROP or ALERT actions that the firewall takes for traffic that the firewall processes. The Network Firewall endpoints are placed in the correct subnets, and the VPC route tables direct traffic to the Network Firewall endpoints on the path to and from the internet.

How should a network engineer configure the firewall to meet these requirements?

Options:

A.

Create a firewall policy to ensure that traffic is processed by stateless or stateful rules according to needs. Select Amazon CloudWatch Logs as the destination for the flow logs.

B.

Create a firewall policy to ensure that traffic is processed by stateless or stateful rules according to needs. Configure Network Firewall logging for alert logs and flow logs.

C.

Select a destination for logs separately for stateful and stateless engines.

D.

Create a firewall policy to ensure that a stateful engine processes all the traffic. Configure Network Firewall logging for alert logs and flow logs. Select a destination for alert logs and flow logs.

E.

Create a firewall policy to ensure that a stateful engine processes all the traffic. Configure VPC flow logs for the subnets that the firewall protects. Select a destination for the flow logs.

Buy Now
Questions 84

A team of infrastructure engineers wants to automate the deployment of Application Load Balancer (ALB) components by using the AWS Cloud Development Kit (AWS CDK). The CDK application must deploy an infrastructure stack that is reusable and consistent across multiple environments, AWS Regions, and AWS accounts.

The lead network architect on the project has already bootstrapped the target accounts. The lead network architect also has deployed core network components such as VPCs and Amazon Route 53 private hosted zones across the multiple environments and Regions. The infrastructure engineers must design the ALB components in the CDK application to use the existing core network components.

Which combination of steps will meet this requirement with the LEAST manual effort between environment deployments? (Choose two.)

Options:

A.

Design the CDK application to read AWS CloudFormation parameters for the values that vary across environments and Regions. Reference these variables in the CDK stack for resources that require the variables.

B.

Design the CDK application to read environment variables that contain account and Region details at runtime. Use these variables as properties of the CDK stack. Use context methods in the CDK stack to retrieve variable values.

C.

Create a dedicated account for shared application services in the multi-account environment. Deploy a CDK pipeline to the dedicated account. Create stages in the pipeline that deploy the CDK application across different environments and Regions.

D.

Write a script that automates the deployment of the CDK application across multiple environments and Regions. Distribute the script to engineers who are working on the project.

E.

Use the CDK toolkit locally to deploy stacks to each environment and Region. Use the --context flag to pass in variables that the CDK application can reference at runtime.

Buy Now
Questions 85

A company has a VPC that includes application workloads that run on Amazon EC2 instances in a single AWS Region. The company wants to use AWS Local Zones to deploy an extension of the application workloads that run in the Region. The extended workloads in the Local Zone need to communicate bidirectionally with the workloads in the VPC in the Region.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create a new VPC in the Local Zone. Attach all the VPCs to a transit gateway. Configure routing for the transit gateway and the VPCs. Deploy instances in the new VPC.

B.

Deploy a third-party appliance in a new VPC in the Region. Create a new VPC in the Local Zone. Create VPN connections to the appliance for the VPCs. Deploy instances in the new VPC in the Local Zone.

C.

Create a new subnet in the Local Zone. Deploy a third-party appliance in the VPC with interfaces in each subnet. Configure the new subnet to route the Local Zone through the appliance. Deploy instances in the new subnet.

D.

Create a new subnet in the Local Zone. Configure the new subnet to use a CIDR block that is within the VPC’s CIDR block. Deploy instances in the new subnet in the Local Zone.

Buy Now
Questions 86

A company is hosting an application on Amazon EC2 instances behind a Network Load Balancer (NLB). A solutions architect added EC2 instances in a second Availability Zone to improve the availability of the application. The solutions architect added the instances to the NLB target group.

The company's operations team notices that traffic is being routed only to the instances in the first Availability Zone.

What is the MOST operationally efficient solution to resolve this issue?

Options:

A.

Enable the new Availability Zone on the NLB

B.

Create a new NLB for the instances in the second Availability Zone

C.

Enable proxy protocol on the NLB

D.

Create a new target group with the instances in both Availability Zones

Buy Now
Questions 87

A company has stateful security appliances that are deployed to multiple Availability Zones in a centralized shared services VPC. The AWS environment includes a transit gateway that is attached to application VPCs and the shared services VPC. The application VPCs have workloads that are deployed in private subnets across multiple Availability Zones. The stateful appliances in the shared services VPC inspect all east-west (VPC-to-VPC) traffic.

Users report that inter-VPC traffic to different Availability Zones is dropping. A network engineer verified this claim by issuing Internet Control Message Protocol (ICMP) pings between workloads in different Availability Zones across the application VPCs. The network engineer has ruled out security groups, stateful device configurations, and network ACLs as the cause of the dropped traffic.

What is causing the traffic to drop?

Options:

A.

The stateful appliances and the transit gateway attachments are deployed in a separate subnet in the shared services VPC.

B.

Appliance mode is not enabled on the transit gateway attachment to the shared services VPC

C.

The stateful appliances and the transit gateway attachments are deployed in the same subnet in the shared services VPC.

D.

Appliance mode is not enabled on the transit gateway attachment to the application VPCs.

Buy Now
Exam Code: ANS-C01
Exam Name: Amazon AWS Certified Advanced Networking - Specialty
Last Update: Jun 7, 2025
Questions: 288

PDF + Testing Engine

$49.5  $164.99

Testing Engine

$37.5  $124.99
buy now ANS-C01 testing engine

PDF (Q&A)

$31.5  $104.99
buy now ANS-C01 pdf
dumpsmate guaranteed to pass
24/7 Customer Support

DumpsMate's team of experts is always available to respond your queries on exam preparation. Get professional answers on any topic of the certification syllabus. Our experts will thoroughly satisfy you.

Site Secure

mcafee secure

TESTED 08 Jun 2025