Summer Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpm65

Professional-Data-Engineer Google Professional Data Engineer Exam Questions and Answers

Questions 4

You have a network of 1000 sensors. The sensors generate time series data: one metric per sensor per second, along with a timestamp. You already have 1 TB of data, and expect the data to grow by 1 GB every day You need to access this data in two ways. The first access pattern requires retrieving the metric from one specific sensor stored at a specific timestamp, with a median single-digit millisecond latency. The second access pattern requires running complex analytic queries on the data, including joins, once a day. How should you store this data?

Options:

A.

Store your data in Bigtable Concatenate the sensor ID and timestamp and use it as the row key Perform an export to BigQuery every day.

B.

Store your data in BigQuery Concatenate the sensor ID and timestamp. and use it as the primary key.

C.

Store your data in Bigtable Concatenate the sensor ID and metric, and use it as the row key Perform an export to BigQuery every day.

D.

Store your data in BigQuery. Use the metric as a primary key.

Buy Now
Questions 5

You need to set access to BigQuery for different departments within your company. Your solution should comply with the following requirements:

Each department should have access only to their data.

Each department will have one or more leads who need to be able to create and update tables and provide them to their team.

Each department has data analysts who need to be able to query but not modify data.

How should you set access to the data in BigQuery?

Options:

A.

Create a dataset for each department. Assign the department leads the role of OWNER, and assign the data analysts the role of WRITER on their dataset.

B.

Create a dataset for each department. Assign the department leads the role of WRITER, and assign the data analysts the role of READER on their dataset.

C.

Create a table for each department. Assign the department leads the role of Owner, and assign the data analysts the role of Editor on the project the table is in.

D.

Create a table for each department. Assign the department leads the role of Editor, and assign the data analysts the role of Viewer on the project the table is in.

Buy Now
Questions 6

You are designing a data warehouse in BigQuery to analyze sales data for a telecommunication service provider. You need to create a data model for customers, products, and subscriptions All customers, products, and subscriptions can be updated monthly, but you must maintain a historical record of all data. You plan to use the visualization layer for current and historical reporting. You need to ensure that the data model is simple, easy-to-use. and cost-effective. What should you do?

Options:

A.

Create a normalized model with tables for each entity. Use snapshots before updates to track historical data

B.

Create a normalized model with tables for each entity. Keep all input files in a Cloud Storage bucket to track historical data

C.

Create a denormalized model with nested and repeated fields Update the table and use snapshots to track historical data

D.

Create a denormalized, append-only model with nested and repeated fields Use the ingestion timestamp to track historical data.

Buy Now
Questions 7

You are migrating your data warehouse to Google Cloud and decommissioning your on-premises data center Because this is a priority for your company, you know that bandwidth will be made available for the initial data load to the cloud. The files being transferred are not large in number, but each file is 90 GB Additionally, you want your transactional systems to continually update the warehouse on Google Cloud in real time What tools should you use to migrate the data and ensure that it continues to write to your warehouse?

Options:

A.

Storage Transfer Service for the migration, Pub/Sub and Cloud Data Fusion for the real-time updates

B.

BigQuery Data Transfer Service for the migration, Pub/Sub and Dataproc for the real-time updates

C.

gsutil for the migration; Pub/Sub and Dataflow for the real-time updates

D.

gsutil for both the migration and the real-time updates

Buy Now
Questions 8

You use a dataset in BigQuery for analysis. You want to provide third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is current. Which solution should you choose?

Options:

A.

Create an authorized view on the BigQuery table to control data access, and provide third-party companies with access to that view.

B.

Use Cloud Scheduler to export the data on a regular basis to Cloud Storage, and provide third-party companies with access to the bucket.

C.

Create a separate dataset in BigQuery that contains the relevant data to share, and provide third-party companies with access to the new dataset.

D.

Create a Cloud Dataflow job that reads the data in frequent time intervals, and writes it to the relevant BigQuery dataset or Cloud Storage bucket for third-party companies to use.

Buy Now
Questions 9

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

Options:

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Buy Now
Questions 10

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

Options:

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Buy Now
Questions 11

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

Options:

A.

Use a row key of the form .

B.

Use a row key of the form .

C.

Use a row key of the form #.

D.

Use a row key of the form >##.

Buy Now
Questions 12

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Buy Now
Questions 13

You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?

Options:

A.

Linear regression

B.

Logistic classification

C.

Recurrent neural network

D.

Feedforward neural network

Buy Now
Questions 14

Which action can a Cloud Dataproc Viewer perform?

Options:

A.

Submit a job.

B.

Create a cluster.

C.

Delete a cluster.

D.

List the jobs.

Buy Now
Questions 15

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Buy Now
Questions 16

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 17

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Buy Now
Questions 18

Your company is using WHILECARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:

# Syntax error : Expected end of statement but got “-“ at [4:11]

SELECT age

FROM

bigquery-public-data.noaa_gsod.gsod

WHERE

age != 99

AND_TABLE_SUFFIX = ‘1929’

ORDER BY

age DESC

Which table name will make the SQL statement work correctly?

Options:

A.

‘bigquery-public-data.noaa_gsod.gsod‘

B.

bigquery-public-data.noaa_gsod.gsod*

C.

‘bigquery-public-data.noaa_gsod.gsod’*

D.

‘bigquery-public-data.noaa_gsod.gsod*`

Buy Now
Questions 19

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in thedashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Buy Now
Questions 20

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Buy Now
Questions 21

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Buy Now
Questions 22

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Buy Now
Questions 23

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Buy Now
Questions 24

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

Options:

A.

Update the current pipeline and use the drain flag.

B.

Update the current pipeline and provide the transform mapping JSON object.

C.

Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.

D.

Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Buy Now
Questions 25

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

Options:

A.

The message body for the sensor event is too large.

B.

Your custom endpoint has an out-of-date SSL certificate.

C.

The Cloud Pub/Sub topic has too many messages published to it.

D.

Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

Buy Now
Questions 26

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Buy Now
Questions 27

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other’s data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

Options:

A.

Load data into different partitions.

B.

Load data into a different dataset for each client.

C.

Put each client’s BigQuery dataset into a different table.

D.

Restrict a client’s dataset to approved users.

E.

Only allow a service account to access the datasets.

F.

Use the appropriate identity and access management (IAM) roles for each client’s users.

Buy Now
Questions 28

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

Options:

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Buy Now
Questions 29

What is the general recommendation when designing your row keys for a Cloud Bigtable schema?

Options:

A.

Include multiple time series values within the row key

B.

Keep the row keep as an 8 bit integer

C.

Keep your row key reasonably short

D.

Keep your row key as long as the field permits

Buy Now
Questions 30

Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks. What should you do?

Options:

A.

Run a local version of Jupiter on the laptop.

B.

Grant the user access to Google Cloud Shell.

C.

Host a visualization tool on a VM on Google Compute Engine.

D.

Deploy Google Cloud Datalab to a virtual machine (VM) on Google Compute Engine.

Buy Now
Questions 31

Which of the following is not possible using primitive roles?

Options:

A.

Give a user viewer access to BigQuery and owner access to Google Compute Engine instances.

B.

Give UserA owner access and UserB editor access for all datasets in a project.

C.

Give a user access to view all datasets in a project, but not run queries on them.

D.

Give GroupA owner access and GroupB editor access for all datasets in a project.

Buy Now
Questions 32

Which of these statements about exporting data from BigQuery is false?

Options:

A.

To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B.

The only supported export destination is Google Cloud Storage.

C.

Data can only be exported in JSON or Avro format.

D.

The only compression option available is GZIP.

Buy Now
Questions 33

How would you query specific partitions in a BigQuery table?

Options:

A.

Use the DAY column in the WHERE clause

B.

Use the EXTRACT(DAY) clause

C.

Use the __PARTITIONTIME pseudo-column in the WHERE clause

D.

Use DATE BETWEEN in the WHERE clause

Buy Now
Questions 34

The CUSTOM tier for Cloud Machine Learning Engine allows you to specify the number of which types of cluster nodes?

Options:

A.

Workers

B.

Masters, workers, and parameter servers

C.

Workers and parameter servers

D.

Parameter servers

Buy Now
Questions 35

When you design a Google Cloud Bigtable schema it is recommended that you _________.

Options:

A.

Avoid schema designs that are based on NoSQL concepts

B.

Create schema designs that are based on a relational database design

C.

Avoid schema designs that require atomicity across rows

D.

Create schema designs that require atomicity across rows

Buy Now
Questions 36

How can you get a neural network to learn about relationships between categories in a categorical feature?

Options:

A.

Create a multi-hot column

B.

Create a one-hot column

C.

Create a hash bucket

D.

Create an embedding column

Buy Now
Questions 37

Which of the following is NOT true about Dataflow pipelines?

Options:

A.

Dataflow pipelines are tied to Dataflow, and cannot be run on any other runner

B.

Dataflow pipelines can consume data from other Google Cloud services

C.

Dataflow pipelines can be programmed in Java

D.

Dataflow pipelines use a unified programming model, so can work both with streaming and batch data sources

Buy Now
Questions 38

Cloud Bigtable is Google's ______ Big Data database service.

Options:

A.

Relational

B.

mySQL

C.

NoSQL

D.

SQL Server

Buy Now
Questions 39

Cloud Dataproc is a managed Apache Hadoop and Apache _____ service.

Options:

A.

Blaze

B.

Spark

C.

Fire

D.

Ignite

Buy Now
Questions 40

Which Cloud Dataflow / Beam feature should you use to aggregate data in an unbounded data source every hour based on the time when the data entered the pipeline?

Options:

A.

An hourly watermark

B.

An event time trigger

C.

The with Allowed Lateness method

D.

A processing time trigger

Buy Now
Questions 41

Which of the following statements about Legacy SQL and Standard SQL is not true?

Options:

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Buy Now
Questions 42

Scaling a Cloud Dataproc cluster typically involves ____.

Options:

A.

increasing or decreasing the number of worker nodes

B.

increasing or decreasing the number of master nodes

C.

moving memory to run more applications on a single node

D.

deleting applications from unused nodes periodically

Buy Now
Questions 43

Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)

Options:

A.

The wide model is used for memorization, while the deep model is used for generalization.

B.

A good use for the wide and deep model is a recommender system.

C.

The wide model is used for generalization, while the deep model is used for memorization.

D.

A good use for the wide and deep model is a small-scale linear regression problem.

Buy Now
Questions 44

What is the HBase Shell for Cloud Bigtable?

Options:

A.

The HBase shell is a GUI based interface that performs administrative tasks, such as creating and deleting tables.

B.

The HBase shell is a command-line tool that performs administrative tasks, such as creating and deleting tables.

C.

The HBase shell is a hypervisor based shell that performs administrative tasks, such as creating and deleting new virtualized instances.

D.

The HBase shell is a command-line tool that performs only user account management functions to grant access to Cloud Bigtable instances.

Buy Now
Questions 45

Which of the following are examples of hyperparameters? (Select 2 answers.)

Options:

A.

Number of hidden layers

B.

Number of nodes in each hidden layer

C.

Biases

D.

Weights

Buy Now
Questions 46

Why do you need to split a machine learning dataset into training data and test data?

Options:

A.

So you can try two different sets of features

B.

To make sure your model is generalized for more than just the training data

C.

To allow you to create unit tests in your code

D.

So you can use one dataset for a wide model and one for a deep model

Buy Now
Questions 47

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Buy Now
Questions 48

In order to securely transfer web traffic data from your computer's web browser to the Cloud Dataproc cluster you should use a(n) _____.

Options:

A.

VPN connection

B.

Special browser

C.

SSH tunnel

D.

FTP connection

Buy Now
Questions 49

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Buy Now
Questions 50

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

Options:

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Buy Now
Questions 51

You need to compose visualization for operations teams with the following requirements:

Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

The report must not be more than 3 hours delayed from live data.

The actionable report should only show suboptimal links.

Most suboptimal links should be sorted to the top.

Suboptimal links can be grouped and filtered by regional geography.

User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possiblecombination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possiblecombination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Buy Now
Questions 52

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Buy Now
Questions 53

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Buy Now
Questions 54

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

Options:

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Buy Now
Questions 55

You have a BigQuery table that contains customer data, including sensitive information such as names and addresses. You need to share the customer data with your data analytics and consumer support teams securely. The data analytics team needs to access the data of all the customers, but must not be able to access the sensitive data. The consumer support team needs access to all data columns, but must not be able to access customers that no longer have active contracts. You enforced these requirements by using an authorized dataset and policy tags After implementing these steps, the data analytics team reports that they still have access to the sensitive columns. You need to ensure that the data analytics team does not have access to restricted data What should you do?

Choose 2 answers

Options:

A.

Create two separate authorized datasets; one for the data analytics team and another for the consumer support team.

B.

Ensure that the data analytics team members do not have the Data Catalog Fine-Grained Reader role for the policy tags.

C.

Enforce access control in the policy tag taxonomy.

D.

Remove the bigquery. dataViewer role from the data analytics team on the authorized datasets.

E.

Replace the authorized dataset with an authorized view Use row-level security and apply filter_ expression to limit data access.

Buy Now
Questions 56

MJTelco is building a custom interface to share data. They have these requirements:

They need to do aggregations over their petabyte-scale datasets.

They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Buy Now
Questions 57

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Buy Now
Questions 58

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Buy Now
Questions 59

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Buy Now
Questions 60

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Buy Now
Questions 61

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor=<actorname> ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Professional-Data-Engineer Question 61

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Buy Now
Questions 62

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 63

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Buy Now
Questions 64

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Buy Now
Questions 65

You use a dataset in BigQuery for analysis. You want to provide third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is current. What should you do?

Options:

A.

Use Analytics Hub to control data access, and provide third party companies with access to the dataset

B.

Create a Dataflow job that reads the data in frequent time intervals and writes it to the relevant BigQuery dataset or Cloud Storage bucket for third-party companies to use.

C.

Use Cloud Scheduler to export the data on a regular basis to Cloud Storage, and provide third-party companies with access to the bucket.

D.

Create a separate dataset in BigQuery that contains the relevant data to share, and provide third-party companies with access to the new dataset.

Buy Now
Questions 66

Your company is currently setting up data pipelines for their campaign. For all the Google Cloud Pub/Sub

streaming data, one of the important business requirements is to be able to periodically identify the inputs and their timings during their campaign. Engineers have decided to use windowing and transformation in Google Cloud Dataflow for this purpose. However, when testing this feature, they find that the Cloud Dataflow job fails for the all streaming insert. What is the most likely cause of this problem?

Options:

A.

They have not assigned the timestamp, which causes the job to fail

B.

They have not set the triggers to accommodate the data coming in late, which causes the job to fail

C.

They have not applied a global windowing function, which causes the job to fail when the pipeline iscreated

D.

They have not applied a non-global windowing function, which causes the job to fail when the pipeline is created

Buy Now
Questions 67

You have data located in BigQuery that is used to generate reports for your company. You have noticed some weekly executive report fields do not correspond to format according to company standards for example, report errors include different telephone formats and different country code identifiers. This is a frequent issue, so you need to create a recurring job to normalize the data. You want a quick solution that requires no coding What should you do?

Options:

A.

Use Cloud Data Fusion and Wrangler to normalize the data, and set up a recurring job.

B.

Use BigQuery and GoogleSQL to normalize the data, and schedule recurring quenes in BigQuery.

C.

Create a Spark job and submit it to Dataproc Serverless.

D.

Use Dataflow SQL to create a job that normalizes the data, and that after the first run of the job, schedule the pipeline to execute recurrently.

Buy Now
Questions 68

You have a query that filters a BigQuery table using a WHERE clause on timestamp and ID columns. By using bq query – -dry_run you learn that the query triggers a full scan of the table, even though the filter on timestamp and ID select a tiny fraction of the overall data. You want to reduce the amount of data scanned by BigQuery with minimal changes to existing SQL queries. What should you do?

Options:

A.

Create a separate table for each ID.

B.

Use the LIMIT keyword to reduce the number of rows returned.

C.

Recreate the table with a partitioning column and clustering column.

D.

Use the bq query - -maximum_bytes_billed flag to restrict the number of bytes billed.

Buy Now
Questions 69

You need to create a data pipeline that copies time-series transaction data so that it can be queried from within BigQuery by your data science team for analysis. Every hour, thousands of transactions are updated with a new status. The size of the intitial dataset is 1.5 PB, and it will grow by 3 TB per day. The data is heavily structured, and your data science team will build machine learning models based on this data. You want to maximize performance and usability for your data science team. Which two strategies should you adopt? Choose 2 answers.

Options:

A.

Denormalize the data as must as possible.

B.

Preserve the structure of the data as much as possible.

C.

Use BigQuery UPDATE to further reduce the size of the dataset.

D.

Develop a data pipeline where status updates are appended to BigQuery instead of updated.

E.

Copy a daily snapshot of transaction data to Cloud Storage and store it as an Avro file. Use BigQuery’s support for external data sources to query.

Buy Now
Questions 70

Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?

Options:

A.

Set a single global window to capture all the data.

B.

Set sliding windows to capture all the lagged data.

C.

Use watermarks and timestamps to capture the lagged data.

D.

Ensure every datasource type (stream or batch) has a timestamp, and use the timestamps to define the logic for lagged data.

Buy Now
Questions 71

You are using Google BigQuery as your data warehouse. Your users report that the following simple query is running very slowly, no matter when they run the query:

SELECT country, state, city FROM [myproject:mydataset.mytable] GROUP BY country

You check the query plan for the query and see the following output in the Read section of Stage:1:

What is the most likely cause of the delay for this query?

Options:

A.

Users are running too many concurrent queries in the system

B.

The [myproject:mydataset.mytable] table has too many partitions

C.

Either the state or the city columns in the [myproject:mydataset.mytable] table have too manyNULL values

D.

Most rows in the [myproject:mydataset.mytable] table have the same value in the country column, causing data skew

Buy Now
Questions 72

You need to create a SQL pipeline. The pipeline runs an aggregate SOL transformation on a BigQuery table every two hours and appends the result to another existing BigQuery table. You need to configure the pipeline to retry if errors occur. You want the pipeline to send an email notification after three consecutive failures. What should you do?

Options:

A.

Create a BigQuery scheduled query to run the SOL transformation with schedule options that repeats every two hours, and enable emailnotifications.

B.

Use the BigQueryUpsertTableOperator in Cloud Composer, set the retry parameter to three, and set the email_on_failure parameter totrue.

C.

Use the BigQuerylnsertJobOperator in Cloud Composer, set the retry parameter to three, and set the email_on_failure parameter totrue.

D.

Create a BigQuery scheduled query to run the SQL transformation with schedule options that repeats every two hours, and enablenotification to Pub/Sub topic. Use Pub/Sub and Cloud Functions to send an email after three tailed executions.

Buy Now
Questions 73

Your chemical company needs to manually check documentation for customer order. You use a pull subscription in Pub/Sub so that sales agents get details from the order. You must ensure that you do not process orders twice with different sales agents and that you do not add more complexity to this workflow. What should you do?

Options:

A.

Create a transactional database that monitors the pending messages.

B.

Create a new Pub/Sub push subscription to monitor the orders processed in the agent's system.

C.

Use Pub/Sub exactly-once delivery in your pull subscription.

D.

Use a Deduphcate PTransform in Dataflow before sending the messages to the sales agents.

Buy Now
Questions 74

You have developed three data processing jobs. One executes a Cloud Dataflow pipeline that transforms data uploaded to Cloud Storage and writes results to BigQuery. The second ingests data from on-premises servers and uploads it to Cloud Storage. The third is a Cloud Dataflow pipeline that gets information from third-party data providers and uploads the information toCloud Storage. You need to be able to schedule and monitor the execution of these three workflows and manually execute them when needed. What should you do?

Options:

A.

Create a Direct Acyclic Graph in Cloud Composer to schedule and monitor the jobs.

B.

Use Stackdriver Monitoring and set up an alert with a Webhook notification to trigger the jobs.

C.

Develop an App Engine application to schedule and request the status of the jobs using GCP API calls.

D.

Set up cron jobs in a Compute Engine instance to schedule and monitor the pipelines using GCP API calls.

Buy Now
Questions 75

Your company is implementing a data warehouse using BigQuery, and you have been tasked with designing the data model You move your on-premises sales data warehouse with a star data schema to BigQuery but notice performance issues when querying the data of the past 30 days Based on Google's recommended practices, what should you do to speed up the query without increasing storage costs?

Options:

A.

Denormalize the data

B.

Shard the data by customer ID

C.

Materialize the dimensional data in views

D.

Partition the data by transaction date

Buy Now
Questions 76

Your organization uses a multi-cloud data storage strategy, storing data in Cloud Storage, and data in Amazon Web Services' (AWS) S3 storage buckets. All data resides in US regions. You want to query up-to-date data by using BigQuery. regardless of which cloud the data is stored in. You need to allow users to query the tables from BigQuery without giving direct access to the data in the storage buckets What should you do?

Options:

A.

Set up a BigQuery Omni connection to the AWS S3 bucket data Create BigLake tables over the Cloud Storage and S3 data and query the data using BigQuery directly.

B.

Set up a BigQuery Omni connection to the AWS S3 bucket data. Create external tables over the Cloud Storage and S3 data and query the data using BigQuery directly.

C.

Use the Storage Transfer Service to copy data from the AWS S3 buckets to Cloud Storage buckets Create BigLake tables over the Cloud Storage data and query the data using BigQuery directly.

D.

Use the Storage Transfer Service to copy data from the AWS S3 buckets to Cloud Storage buckets Create external tables over the Cloud Storage data and query the data using BigQuery directly

Buy Now
Exam Name: Google Professional Data Engineer Exam
Last Update: Sep 18, 2025
Questions: 383

PDF + Testing Engine

$57.75  $164.99

Testing Engine

$43.75  $124.99
buy now Professional-Data-Engineer testing engine

PDF (Q&A)

$36.75  $104.99
buy now Professional-Data-Engineer pdf
dumpsmate guaranteed to pass
24/7 Customer Support

DumpsMate's team of experts is always available to respond your queries on exam preparation. Get professional answers on any topic of the certification syllabus. Our experts will thoroughly satisfy you.

Site Secure

mcafee secure

TESTED 18 Sep 2025